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Outline of the lectures

@ Gravitational wave events and gravitational astronomy

© Methods to compute gravitational wave templates

© Perturbative methods in general relativity

0 Einstein quadrupole moment formalism

© Generation of gravitational waves by isolated systems

@ Multipolar post-Minkowskian and matching approach

@ Flux-balance equations for energy, momenta and center of mass
6 Fokker approach to the PN equations of motion

e Post-Newtonian versus perturbation theory

@ Post-Newtonian versus post-Minkowskian

@ Spin effects in compact binary systems
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Gravitational wave events and gravitational astronomy

GRAVITATIONAL WAVE EVENTS
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Gravitational wave events and gravitational astronomy

World-wide network of gravitational wave detectors

[Rainer Weiss,
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Gravitational wave events and gravitational astronomy

Binary black-hole event GW150914 [LIGO/VIRGO collaboration 2016]

Hanford, Washington (H1)
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Gravitational wave events and gravitational astronomy

Binary black-hole event GW150914 [LIGO/VIRGO collaboration 2016]
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Gravitational wave events and gravitational astronomy

Binary black-hole event GW150914 [LIGO/VIRGO collaboration 2016]
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Gravitational wave events and gravitational astronomy

Gravitational wave events [Lico/virco 2016, 2017]

, GW170104

L GW170814
WA

0 sec. 1sec.
time observable by LIGO-Virgo

@ For BH binaries the detectors are mostly sensitive to the merger phase and a
few cycles are observed before coalescence

@ For NS binaries the detectors will be sensitive to the inspiral phase prior the
merger and thousands of cycles are observable
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Gravitational wave events and gravitational astronomy

Binary neutron star event GW170817 (1icovirgo 2017

t._, .‘. .
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@ The signal is observed during ~ 100s and ~ 3000 cycles and is the loudest
gravitational-wave signal yet observed with a combined SNR of 32.4

@ The chirp mass is accurately measured to M = p3/°M?/5 = 1.98 M,
@ The distance is measured from the gravitational signal as D = 40 Mpc
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Gravitational wave events and gravitational astronomy

Post-merger waveform of neutron star binaries
[Shibata et al., Rezzolla et al. 1990-2010s]
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Gravitational wave events and gravitational astronomy

The advent

of multi-messenger ast
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Methods to compute gravitational wave templates

METHODS TO COMPUTE GW TEMPLATES
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Methods to compute gravitational wave templates

Methods to compute GW templates
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Methods to compute gravitational wave templates

Methods to compute GW templates
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Methods to compute gravitational wave templates

The gravitational chirp of compact binaries

merger phase
numerical relativity
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Methods to compute gravitational wave templates

The GW templates of compact binaries

@ In principle, the templates are obtained by matching together:
o A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
e A highly accurate numerical waveform for the merger and ringdown
[Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]
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Methods to compute gravitational wave templates

The GW templates of compact binaries

@ In principle, the templates are obtained by matching together:

o A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
e A highly accurate numerical waveform for the merger and ringdown
[Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]

@ In the practical data analysis, for black hole binaries (such as GW150914),
effective methods that interpolate between the PN and NR play a key role:
o Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et al. 2011] are
constructed by matching the PN and NR waveforms in a time interval
through an intermediate phenomenological phase
o Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on
resummation techniques extending the domain of validity of the PN
approximation beyond the inspiral phase
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Methods to compute gravitational wave templates

The GW templates of compact binaries

@ In principle, the templates are obtained by matching together:
o A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]
e A highly accurate numerical waveform for the merger and ringdown
[Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]

@ In the practical data analysis, for black hole binaries (such as GW150914),
effective methods that interpolate between the PN and NR play a key role:
o Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et al. 2011] are
constructed by matching the PN and NR waveforms in a time interval
through an intermediate phenomenological phase
o Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on
resummation techniques extending the domain of validity of the PN
approximation beyond the inspiral phase

@ In the case of neutron star binaries (such as GW170817), the masses are
smaller and the templates are entirely based on the 3.5PN waveform
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Methods to compute gravitational wave templates

Methods to compute PN equations of motion

o
o
o
(%]
o

ADM Hamiltonian canonical formalism [Ohta et al. 1973; Schifer 1985]

EOM in harmonic coordinates [Damour & Deruelle 1985; Blanchet & Faye 1998, 2000]
Extended fluid balls [Grishchuk & Kopeikin 1986]

Surface-integral approach [itoh, Futamase & Asada 2000]

Effective-field theory (EFT) [Goldberger & Rothstein 2006; Foffa & Sturani 2011]

EOM derived in a general frame for arbitrary orbits
Dimensional regularization is applied for UV divergences!
Radiation-reaction dissipative effects added separately by matching

Spin effects can be computed within a pole-dipole approximation

Tidal effects incorporated at leading 5PN and sub-leading 6PN orders

LExcept in the surface-integral approach
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Methods to compute gravitational wave templates

Methods to compute PN radiation field

@ Multipolar-post-Minkowskian (MPM) & PN [Blanchet-Damour-lyer 1986, . . ., 1998]
@ Direct iteration of the relaxed field equations (DIRE) [will-Wiseman-Pati 1996, . . .]
@ Effective-field theory (EFT) [Hari Dass & Soni 1982; Goldberger & Ross 2010]

@ Involves a machinery of tails and related non-linear effects

@ Uses dimensional regularization to treat point-particle singularities

@ Phase evolution relies on balance equations valid in adiabatic approximation
@ Spin effects are incorporated within a pole-dipole approximation

@ Provides polarization waveforms for DA & spin-weighted spherical harmonics
decomposition for NR
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Perturbative methods in general relativity

PERTURBATIVE METHODS IN GENERAL RELATIVITY
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Perturbative methods in general relativity

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE

E[ﬁ(m)] =0
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Perturbative methods in general relativity

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
E[g(z)] =0
@ Assume a one-parameter family of solutions g(x, A) with g(z,0) = g(z)

E[g(x,/\)] =0
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Perturbative methods in general relativity

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
Efg(z)] =0
@ Assume a one-parameter family of solutions g(x, \) with g(z,0) = g(z)
E[g(x, /\)] =0

@ Defining h(z) = (0g/0X)(x,0) we obtain the linear second-order PDE

OF OF
h—[g] + Oh——[g] + 0%
5y 7 M5ag) 7

oFE _
o) 7 =
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Perturbative methods in general relativity

General problem of linear perturbations

@ Suppose we know a solution g(z) of the second-order PDE
Efg(z)] =0
@ Assume a one-parameter family of solutions g(x, \) with g(z,0) = g(z)
E[g(x, /\)] =0

@ Defining h(z) = (0g/0X)(x,0) we obtain the linear second-order PDE

OF OF
h—[g] + Oh——[g] + 0%
5y 7 M5ag) 7

oFE _
o) 7 =

@ A good approximation to the exact solution g(x, \) for non-zero but small X is

gin(z) =g(z) + Ah(z)
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Perturbative methods in general relativity

Linear perturbation of a black-hole solution

Perturbation of a black hole (vacuum solution of the EFE) by
@ cosmological GW incoming onto the BH
@ particle orbiting around the BH
@ accretion disk around the BH

0*? = Vgl (5°7 + h*?)

167G
ct

Tne? 4 2R, v = 22 s7e8

V,h* =0

where 677 is the stress-energy tensor of matter perturbing the black hole
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Perturbative methods in general relativity

Reliability of the perturbative equations

@ To any one-parameter family of solutions g(x, \) corresponds a solution h(z)
of the linear perturbative equations

@ But the converse is not necessarily true, i.e. given a solution h(z) there does
not necessarily exist an exact solution such that h(z) = (9g/0)\)(x,0)

@ More generally, an infinite set of solutions h,(z) (with n € N) of the
perturbation equations to all non-linear orders n does not necessarily come
from the Taylor expansion of some exact solution g(x,\) when A — 0

Knowing if it does is the problem of the reliability of the perturbation equations
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Perturbative methods in general relativity

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

o«
167G

Einstein-Hilbert action

SGR d4='17 vV —g R + Sm [g/Lu) \I/]
—_————

matter fields
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Perturbative methods in general relativity

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

SGR d4='17 vV —g R + Sm [g/Lu) \I/]
—_————

matter fields

o«
167G

Einstein-Hilbert action

@ Add the harmonic coordinates gauge-fixing term (where g*” = \/—gg")

c? 4 1
= T 5 — T a.al Q- Buv
SR = 162G /d x(ﬂR 58050,8" 0,8 ) + S

gauge-fixing term

Luc Blanchet (GReCO PN methods for GWs Fields Institute



Perturbative methods in general relativity

Einstein field equations as a “Probleme bien posé”

o Start with the GR action for the metric g, with the matter term

SGR d4='17 vV —g R + Sm [g/Lu) \I/]
—_————

matter fields

o«
167G

Einstein-Hilbert action

@ Add the harmonic coordinates gauge-fixing term (where g*” = \/—gg")

c? 4 1
= T 5 — T a.al Q- Buv
SR = 162G /d x(ﬂR 58050,8" 0,8 ) + S

gauge-fixing term

@ Get a well-posed system of equations [Hadamard 1932; Choquet-Bruhat 1952

non-linear source term
y o 167G o -, >
0" 0,0°" = ——gIT*" + £*"[g, 0]
0ug* =0
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Perturbative methods in general relativity

Perturbation around Minkowski space-time

Assume space-time slightly differs from Minkowski space-time 7,3

g =n® 4+ h?  with |hl <1

non-linear source term
167G i’ > 167G
af _ af af 2 — af
One? = == 19T + AF[h,0h, 0] = —= ¢
stress-energy pseudo-tensor

9, h" =0

N———r

harmonic-gauge condition

where 00 = 7"¥0,,0, is the flat d'Alembertian operator
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Perturbative methods in general relativity

The post-Minkowskian approximation

[Bertotti 1956; Bertotti & Plebanski 1960; Westpfahl et al. 1980, 1985; etc.]

Appropriate for weakly self-gravitating isolated matter sources

M mass of source

_GM <1
TPM = 2a a size of source

gﬂé,@ — naﬂ + Z aQr haﬁ

%,_/
G labels the PM expansion

know from previous iterations
167TG
B B B
Ohy = —1 1917y + AGylhay, - An—1)]
Buhlh = 0
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Perturbative methods in general relativity

Post-Newtonian expansion

[L rentz & Droste 1917; Einstein, Infeld & Hoffmann 1932; Fock 1959; Chandrasekhar 1965; etc.]

Valid for isolated matter sources that are at once slowly moving, weakly stressed
and weakly gravitating (so-called post-Newtonian source) in the sense that

700

Tii
00

U
e

)

<1

b

EpN = max ’

@ cpn plays the role of a slow motion estimate epy ~ v/c < 1

@ For self-gravitating sources the internal motion is due to gravitational forces
(e.g. a Newtonian binary system) hence v> ~ GM/a

o Gravitational wavelength A\ ~ ¢P where P ~ a/v is the period of motion

v

a
~ ~ — ~EPN
A c
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Perturbative methods in general relativity

Post-Newtonian expansion

near zone

A

@ Near zone defined by r < A\ covers entirely the post-Newtonian source

@ General PN expansion inside the source’s near zone

1
hgﬁ(x7 t,c) = Z c—phgﬁ(x, t,Inc)
p=2
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Perturbative methods in general relativity

MU|tipO|ar expanSiOI’l [e.g. Pirani 1964; Thorne 1980]

Valid in the exterior of any possibly strong field isolated source

a a size of source
- <1 r distance to source

r L.
A ~ ¢P wavelength of radiation
My, ~ Ma* Sp, ~ Ma'v (L =iy---ip)
mass-type multipole moment current-type multipole moment

Split space-time into near zone r < A and wave zone r > \

Sy G MmO g
hnz ~ 2 Z Lﬂeﬂ CTZ+1:| hwz ~ 2r Z PSS
4

r<A >\
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Perturbative methods in general relativity

MU'tipOlar expanSiOI’l [e.g. Pirani 1964; Thorne 1980]

@ Notice that radiative multipolar field in the wave zone

¢ [MO g0
hwz ~ - Z o T
¢

is actually a PN expansion in the case of a PN source

MY Mat .
e M

@ Quadrupole moment formalism gives the lowest order PN contribution to the
radiation field due to the mass type quadrupole moment (¢ = 2)

Mij = Qi+ Olepn)
ng(t) = / dsl' PN ((B,t) <.’E7;£L’j — 1(57;]‘:132)
PN source N—— 3

Newtonian
mass density

Fields Institute 28 / 104
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EINSTEIN QUADRUPOLE MOMENT FORMALISM
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Einstein quadrupole moment formalism

100 years of gravitational radiation (einscin 1916]

348

DOC. 32 INTEGRATION OF FIELD EQUATIONS

688  Sitsung der physikaliscl-mathematischen Klasse vom 22. Juni 1916

Niiherungsweise Integration der Feldgleichungen
der Gravitation.

Von A. Eingrein.

Bei der Belianiliung der meisten speaiellen (nicht prinzipiellen) Probleme
auf dem Gebicte der Gravitationstheorie kann man sich damit begnfigen,
die g,, in unlaNlbemngm berechnen. Dabei bedient man sich mit
Vorteil der ble x, = if aus denselben Griinden wie
in der speziellen RelativitAtstheorie. Unter serster Niherunge ist dahei
den, da8 die durch die Gleichung
9o =—8,+"., 0]

definierten GrdBen v,,, welche i rth den Transf !
gegenitber Tensorcharakter besitzen, gegen 1 als kleine GrofSen be-
handelt werden kOnnen, deren Quadrate und Produkte gegen die ersten
Potenzen vernachlfssigt werden dirfen. Dabei ist &, =1 baw. 4, =0,
je nachdem p = v oder p = r.

Wir werden zeigen, daB diese -,*,_ in analoger Weise berechnet

Luc Blanchet PN methods for GWs

<= small perturbation of
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Einstein quadrupole moment formalism

100 years of gravitational radiation insein 1015

Einstein's quadrupole formula

mit 47 /" multiplizierte 8 endlich ist der Energieverlust pro Zeiteinheit
fles mechanischen Systems durch Gravitationswellen. Die Rechnung ergibt

PR & _"lwdq Y
4TRS = 0 lZ,.L = (2 \) 1 (30)
Man sieht an di Ergebnis, daB ein hanisches System, welches
dauernd Kugelsymmetrie behiilt, nicht strahlen kann, im Gegensatz
zu dem dureh einen Rechenfehler entstellten Ergebnis der frilheren
Abhandlung.

Aus (27} ist ersichtlieh. da@ die Ausstrahlung in keiner Richtung
negativ werden kaun, alse sicler aueh nicht die totale Ausstrahlung.
Bereits in der feilieren Abhandlung ist betont geworden, da8 das End-
ergebnis dieser Betrachtung. welches einen Energieverlust der Korper
infolge der thermischen Agitation verlangen wirde, Zweifel an der
allgemeinen Gilltigkeit der Theorie hervorrufen mufl. Fs scheint, daB
eine vervollkommnete Quantentheorie eine Modifikation auch der Gra-
vitationstheorie wird bringen missen.

§3 Einwirkung von Gravitationswellen auf mechanische
Systeme.

Der Vollstindigkeit halber wollen wir auch kure aberlegen, in-

wisfern Energie von Gravitationswellen auf hanische Systeme iiber-

cehen kann.  Es liege wieder oin mechanisches Svstem vor von der

Luc Blanchet ( PN methods for GWs Fields Institute



Einstein quadrupole moment formalism

100 years of gravitational radiation insein 1015

Einstein's quadrupole formula

wit 47 /" multiplizierte 8 endlich ist der Energieverlust pro Zeiteinheit
tles mechanischen Systems durch Gravitationswellen. Die Rechnung ergibt

4RRS = — lz 2 J.J) 1 (30

Man sieht an di Ergebnis, daB ein hanisches System, welches
dauernd Kugelsymmetrie ihilr. nicht strahien kann, im Gegensatz

2 dem dureh einen Recffehler entstellten Ergebnis der fritheren
Abhandlung.

Aus {27} ist ersichtlicll daB die Ausstrahlung in keiner Richtung
negativ werden kaun, alsofsicler aueh nicht die totale Ausstrahlung.
Bereits in der frileren Ahh) fnllungz ist betont geworden, daB das End-
ergebnis dieser Hel::'achtun1 welches einen Energieverlust der Korper

factor 1/80 should be 1/40 !

$5 Einwirkung von Gravitationswellen auf mechanische
Systeme.

Der Vollstindigkeit halber wollen wir auch kure dberlegen, in-

wisfern Energie von Gravitationswellen auf hanische Systeme iiber-

cehen kann.  Hs liege wieder oin mechanisches Svstem vor von der
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Einstein quadrupole moment formalism

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

. X -
2 4 A2 ’ —1 Ay 2
‘9(/7 //;? “_'//: L /..;: S T 7T [/ / /
Yo L . 2 \y,‘ . /

@ Einstein quadrupole formula

GW 30)..430).. 2
dENT _ G dQldeZJ+O(g)
dt 5¢5 | de3  de3 c
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Einstein quadrupole moment formalism

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

. X -

2 1 2 ’ —1 Ay 2

YJr /4 “J/: P /.”Ju’,d —= (D /
’/jd/ i o \.._; e /

@ Einstein quadrupole formula

GW 30)..430).. 2
dENT _ G dQldeZJ+O(g)
dt 5¢5 | de3  de3 c

@ Amplitude quadrupole formula

T_ 26 [dQ; (, R oL (L
hij T AR\ de2? t c +O(c) +0 R2
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Einstein quadrupole moment formalism

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

Y70 /0

2

—

4
v

—
-

X /“ ~ A,

— ) /
— P
Yo L -

@ Einstein quadrupole formula

K4
3

—

/ 7’
L
Ve

dE
dt

oW
G [d3Q;; d3Qy; Lo
de3  de3

T 5

@ Amplitude quadrupole formula

T _ 2G
v =R

{

d*Qyj R
w2 (- 2) 4o

()} o

1
R2

© Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

reac __
Fiec =

26
55" T ars

which is a 2.5PN ~ (v/c)® effect in the source’s equations of motion

Luc Blanchet (GR.
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Einstein quadrupole moment formalism

Application to COmpaCt binaries [Peters & Mathews 1963; Peters 1964]

a semi-major axis of relative orbit
e eccentricity of relative orbit
w = 2% orbital frequency

M=m;+m o 1
u:L}\}l"z Slv=gp 0<vsg

Averaged energy and angular momentum balance equations

(0=~ (T = (g8

are applied to a Keplerian orbit (using Kepler's law GM = w?a?)

@Ry _1902m (mGMNP Lt B 4 et
dt 5¢5 P (1— 62)7/2
de 6087 e [2rGM\°/® 14 121.2
(7)=- V= 304
dt 1505 P P (1 _ 62)5/2

Luc Blanchet (GR
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Einstein quadrupole moment formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ Compact binaries are circularized when they enter the detector's bandwidth

Mc? 32¢°
E=- 2C v fGW=€2V2$5
where z = (%)2/3 denotes a small PN parameter defined with w
@ Equating (iTIf = —FCW gives a differential equation for z
de _64chv 5 @ 9y (GMw\'
dt 5 GM w2 5 c?

© This permits to solve for the orbital phase

qS:/wdt:/gdw

Luc Blanchet (GR O PN methods for GWs
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Einstein quadrupole moment formalism

Orbital phase evolution of compact binaries

[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

@ The amplitude and phase evolution follow an adiabatic chirp in time

256 G3 M3 1/4
alt) = (5c5y(t° - t)>
1 /256 5/8
¢(t):¢c_32y( 5 éﬂl}(t _t)>

@ The amplitude and orbital frequency diverge at the instant of coalescence ¢,
since the approximation breaks down

1 T T T T T T

g
& o5
§ Il
3 m \\
H AANAANAAAAAAANANN \f {
g = V\/\/V\ /\/\/\/\/ VUV V\v’\/ VUV \/\v V \v \v’\u ’V M”m
S
]
s 05
5]

e \ \ L . \ \ \ \ \

0 001 002 003 004 005 006 007 008  0.09 0.1

Time
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Einstein quadrupole moment formalism

Waveform of inspiralling compact binaries

observer

~ orbital plane

ascending node

2Gu ( GMw 2/3 .
= Sp ( = ) (1 + cos? i) cos (2¢)
2Gu [ GMw\?? o
hy = 5 ( = > (2 cosi) sin (2¢)

The distance of the source R is measurable from the GW signal [Schutz 1986]
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Einstein quadrupole moment formalism

The quadrupole formula works for the binary pulsar

[Taylor & Weisberg 1982]

General Relativity Pn:d\'r.h'on/

Cumulative shift of periastron time (s)

=30
1975 1980 1985 1990 1995 2000
Yeor

~ 2.4 x 10712

,19271/ oG M\*® 1+ ;%62 + g%e‘l
5¢° P (1—e2)7/2

[Peters & Mathews 1963, Esposito & Harrison 1975, Wagoner 1975, Damour & Deruelle 1983]
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Einstein quadrupole moment formalism

The quadrupole formula works also for GW150914 !

@ The GW frequency is given in terms of the chirp mass M = ;/5 M2/ by

—3/8

f=-

256 GM5/3
™ [ 5 cb (tf B t)]

@ Therefore the chirp mass is directly measured as

5 3/5
f 11/’%]0
96 G7r8/3

which gives M = 30M¢ thus M > 70M
© The GW amplitude is predicted to be

MN\/® 7100 Mpc /100 Hz\ /°
hett ~ 4.1 x 10~ 22< > ( >< ) ~1.6x 1072
T M@ D fmerger

@ The distance D = 400 Mpc is measured from the signal itself
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Einstein quadrupole moment formalism

Total energy radiated by GW150914

@ The ADM energy of space-time is constant and reads (at any time t)

G G
EADM _ (ml + ’ITLQ)CQ _ mimsa +

¢
il (OB (¢
ey ey
@ Initially Eapm = (my + ma)c? while finally (at time tf)

¢

G f 3)\ 2
Eapm = Msc® + B dt/(QE;)) (t')
—o0

© The total energy radiated in GW is

G [ 3)\ 2 Gmim
dt/(QEj)) (t/) _ ez

AESY = — Mp)® = —
(m1 + mo f)c 55 ) e

@ The total power released is

P ~ 73](;4;_:2 ~109W~ 1075
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Generation of gravitational waves by isolated systems

GENERATION OF GRAVITATIONAL WAVES
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

: : ¢ La
” : : ” exterior zone
o i v -
" ¢ e I
* inner zone * 5
* : : * *

isolated matter
system
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

( radiation field observed
\ ; ; o at large distances
H H e .
‘. ? o ,{ h
* : : ¢ L& |J
‘e i i 4% exterior zone
* A ®;
| o i| /)i% o P
e inner zone DA RN
* ; : * ‘e
*e 00’ o wave zone
’0 : ‘e 4 {
radiation reaction : : g A
inside the source A ¢ Lo
- i N 4 Q:’
[ reac P o? R
: : SRR 4
' L 2 RS
v : * DS
¢ >
¢ *
HR 4 ¢
. *
*
*
.

isolated matter
system
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

© Generation problem

o What is the gravitational radiation field generated in a detector at large
distances from the source?

Luc Blanchet ( PN methods for GWs Fields Institute



Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

© Generation problem

o What is the gravitational radiation field generated in a detector at large
distances from the source?

@ Propagation problem

e Solve the propagation effects of gravitational waves from the source to the
detector, including non-linear effects
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

© Generation problem

o What is the gravitational radiation field generated in a detector at large
distances from the source?

@ Propagation problem

e Solve the propagation effects of gravitational waves from the source to the
detector, including non-linear effects

© Motion problem

o Obtain the equations of motion of the matter source including all conservative
non-linear effects
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Generation of gravitational waves by isolated systems

Isolated matter system in general relativity

© Generation problem

o What is the gravitational radiation field generated in a detector at large
distances from the source?

@ Propagation problem

e Solve the propagation effects of gravitational waves from the source to the
detector, including non-linear effects

© Motion problem

o Obtain the equations of motion of the matter source including all conservative
non-linear effects

© Reaction problem

o Obtain the dissipative radiation reaction forces inside the source in reaction to
the emission of gravitational waves
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Generation of gravitational waves by isolated systems

Asymptotic structure of radiating space-time

[Bondi-Sachs formalism 1960s]

1t
future infinity |

future null infinity

past null infinity
\

past infinity | B
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Generation of gravitational waves by isolated systems

Notion of asymptotic flatness penose 1963 1065]

Definition: [e.g. Geroch & Horowitz 1978]

A space-time (M, gqp) is said to be asymptotically simple at null
infinity if there exists a C'* manifold M with boundary J
together with a C* Lorentz metric gog and a C'™° scalar field {2
on M such that:
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Generation of gravitational waves by isolated systems

Notion of asymptotic flatness penose 1963 1065]

Definition: [e.g. Geroch & Horowitz 1978]

A space-time (M, gqp) is said to be asymptotically simple at null
infinity if there exists a C'* manifold M with boundary J
together with a C* Lorentz metric gog and a C'™° scalar field {2
on M such that:

Q in the interior M\ J we have §us = Q%gas;
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Generation of gravitational waves by isolated systems

Notion of asymptotic flatness penose 1963 1065]

Definition: [e.g. Geroch & Horowitz 1978]

A space-time (M, gqp) is said to be asymptotically simple at null
infinity if there exists a C'* manifold M with boundary J
together with a C* Lorentz metric gog and a C'™° scalar field {2
on M such that:

Q in the interior M \ 7 we have jo5 = 02gus;
@ at the boundary 7 we have Q = 0 and §*°V,QV3Q = 0;
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Generation of gravitational waves by isolated systems

Notion of asymptotic flatness penose 1963 1065]

Definition: [e.g. Geroch & Horowitz 1978]

A space-time (M, gqp) is said to be asymptotically simple at null
infinity if there exists a C'* manifold M with boundary J
together with a C* Lorentz metric gog and a C'™° scalar field {2
on M such that:

Q in the interior M \ 7 we have jo5 = 02gus;
@ at the boundary 7 we have Q = 0 and §*°V,QV3Q = 0;

@ J consists of two parts, 7T and J~, each with topology
S? x R, with the R’s being complete null generators.
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Generation of gravitational waves by isolated systems

Bondi mass versus ADM mass

radiation
P4 loss
R4

*
*
*
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Generation of gravitational waves by isolated systems

Kirchhoff’s formula

For an homogeneous solution of the wave equation Oh =0

dey 0 , |x — x/|
h(x t |XI|11—I>I~1H>0 // ( Cat) (Th) <X ot &

(X, t)

(X, t) = field point
(X', t') = source point

matter
source
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Generation of gravitational waves by isolated systems

No-incoming radiation condition
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Generation of gravitational waves by isolated systems

No-incoming radiation condition

matter |
source o

no-incoming
radiation condition
imposed at
past null infinity
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Generation of gravitational waves by isolated systems

Two-body system formed from freely falling particles

Gravitational motion of initially free
v particles when ¢t — —00 [Eder 1989]

z(t) = Vit+Win(—t) + X + o(t°)

where V' and X are constant vectors,
and W =GMV V3
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Generation of gravitational waves by isolated systems

Hypothesis of stationarity in the remote past

Q . .
“‘ ¢ . ‘.’ In practice all GW sources observed in
w % o .‘ astronomy (e.g. a compact binary
* “ * * .
. . . . system) will have been formed and
. R4 . . -
‘.‘ o started to emit GWs only from a finite
., ‘o’ instant in the past —7
* *
0‘ ’0
* *
iy stationary field
when
t-L <.
c
GW source
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Multipolar post-Minkowskian and matching approach

MULTIPOLAR POST-MINKOWSKIAN APPROACH
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Multipolar post-Minkowskian and matching approach

Linearized multipolar vacuum solution [rome 100

Solution of linearized vacuum field equations in harmonic coordinates

Ohy) =
4 = . . .
hd) = - —QZ—(E ( (u)) L—iris-is ‘
=0
13 (= ) 1 i 1
hity = 3 Z {81; 1 ( fi)1(u)> + 1 1€iab8aL—1 (TJbLl(U))}

4= (-) 1.2 2 1 (1)
h(Jl) = 7742 /) {aL—2( IUL 2( )> + €+18aL—2 <T€ab( ]j)bL 2( ))}

6ha“:0

@ multipole moments I, (u) and Jg(u) are arbitrary functions of u =t —r/c
@ mass I = M = const, center-of-mass position X; = I;/M = const

. 1
@ linear momentum P; = Ii( ) = 0, angular momentum J; = const
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ The linearized solution is the starting point of an explicit MPM algorithm
af n Otﬁ
hytpm = ZG hy

where h?l’ﬁ)’ is defined from the multipole moments Iy, and Jp,

Luc Blanchet ( PN methods for GWs Fields Institute

51/



Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ The linearized solution is the starting point of an explicit MPM algorithm

i = 3 0]

where hal’ﬁ)’ is defined from the multipole moments Iy, and Jp,

@ Hierarchy of perturbation equations is solved by induction over n

af _ pap
Dh(n) = A(n) [h(1)7 h(g), ceey h(n—l)]

ap _
1o} h(n) 0
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ The linearized solution is the starting point of an explicit MPM algorithm

i = 3 0]

hes

where 1 is defined from the multipole moments Iy, and Jp,

@ Hierarchy of perturbation equations is solved by induction over n

Dha n) = A(n) [Py h2)s - Pn—1)]

ap _
1o} h(n) 0

© A regularization is required in order to cope with the divergency of the
multipolar expansion when r — 0
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Multiply source term by 7 where B € C and integrate

u?nﬁ)(B) =0t {TBA‘()‘T’LB}

ret
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Multiply source term by 7 where B € C and integrate

Wi (B) = Ont [rPAL)]

ret

@ Consider Laurent expansion when B — 0

u(n) Z u; ﬁ BJ then

J=Jmin

{j<0 — Du“f):o

. (lnr)J af
720 = Oujf,) = S57A%
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Multiply source term by 7 where B € C and integrate

Wi (B) = Ont [rPAL)]

ret

@ Consider Laurent expansion when B — 0

u(n) Z u; ﬁ BJ then

J=Jmin

{j<0 = Du(n) 0

. (lnr)J af
720 = Oujf,) = S57A%

@ Define the finite part (FP) when B — 0 to be the zeroth coefficient ug&)

aB _ BpafB ozB aﬂ
()fFPDm[ A(n)] then D = Af
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Harmonic gauge condition is not yet satisfied

a —1 B— 3
wf‘n) = 8uu(7’j) =FPO.! |BrP~tn; %)]
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Harmonic gauge condition is not yet satisfied
a —1 B-1 3
wly = Bl = FPOL [BrP~ln, g;;)]

Q But Dw?n) = 0 hence we can compute v?f) such that at once

Oug,y =0 and  dyup) = —wiy
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

@ Harmonic gauge condition is not yet satisfied

ret

Wiy = 8uu(0‘7’j) =FPOLt [BrP~1n, %)]

Q But Dw?n) = 0 hence we can compute v?f) such that at once
Du‘()‘f) =0 and Juug, = —wj,
© Thus we define
af _ _af af
My = Un) T V)

Fields Institute
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

Theorem 1:
The MPM solution is the most general solution of Einstein's vacuum equations
outside an isolated matter system

Theorem 2:
The general structure of the PN expansion is

o (Inc)?
hPﬁ(X7t7 )= Z P hffg( t)
220

Theorem 3:
The MPM solution is asymptotically flat at future null infinity in the sense of
Penrose and agrees with the Bondi-Sachs formalism
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Multipolar post-Minkowskian and matching approach

Multipolar-post-Minkowskian expansion

[Blanchet & Damour 1986, 1988 1992; Blanchet 1987, 1993, 1998]

B .
radiation
AN\ loss
K4

matter
source

G u
Ma(w) = Muom 5z [ deM M0

mass-energy emitted in GW
higher-order multipole moments and
+ higher-order PM approximations

computable to any order by the MPM algorithm
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Multipolar post-Minkowskian and matching approach

The MPM-PN formalism

[Blanchet 1995, 1998; Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone
~—
- 0:(
P o
/| . o {

L
* !,.’
* exterior zone

PN source
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Multipolar post-Minkowskian and matching approach

The MPM-PN formalism

[Blanchet 1995, 1998; Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone
~—
H 0:(
| o
AN &AL

* i

] * La
- =’ exterior zone

MR = MR

matching equation

70

PN source
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

@ This is a variant of the theory of matched asymptotic expansions

the multipole expansion M (h*?) = hol,
match with
the PN expansion h*? = h‘;ﬁ

M(hoB) = M(h*P)

o Left side is the NZ expansion (r — 0) of the exterior MPM field
o Right side is the FZ expansion (r — +00) of the inner PN field

@ The matching equation has been implemented at any post-Minkowskian
order in the exterior field and any PN order in the inner field

@ It gives a unique (formal) multipolar-post-Newtonian solution valid
everywhere inside and outside the source
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstrém et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

exterior zone

E——

matching zone
3 9
: near zone

actual solution
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstrém et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

exterior zone

E——

multipole expansion

matching zone
3 9
: near zone

actual solution

Luc Blanchet
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstrt')m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

exterior zone

—

multipole expansion

matching zone
3 9
: near zone

actual solution
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Multipolar post-Minkowskian and matching approach

The matching equation

[Lagerstr6m et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

multipole expansion

———' E

exterior zone - matching zone
] =
: hear zone
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Multipolar post-Minkowskian and matching approach

General solution for the multipolar field (sianchet 1095, 1008]

+oo uv
M(h™) = FPOLMA™) + 3 0 {ML t=r/e) }

r
£=0

homogeneous retarded solution

1
where MM (t) = FP/dsxiL/ dzde(z) T (x,t — zr/c)
-1 S———

PN expansion of the pseudo-tensor

@ The FP procedure plays the role of an UV regularization in the non-linearity
term but an IR regularization in the multipole moments

@ From this one obtains the multipole moments of the source at any PN order
solving the wave generation problem

@ This is a formal PN solution i.e. a set of rules for generating the PN series
regardless of the exact mathematocal nature of this series
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Multipolar post-Minkowskian and matching approach

General solution for the inner PN field

[Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2004]

400 v v
v 1w Ry (t—r/c) - R”(t+71/c)
A = FPO 7+ +;<9L{ L —

homogeneous antisymmetric solution

where RPY(t) = FP/dSX.f?L/ dzve(z) M(TH)(x,t — 2r/c)
1

multipole expansion of the pseudo-tensor

@ The radiation reaction effects starting at 2.5PN order appropriate to an
isolated system are determined to any order

@ In particular nonlinear radiation reaction effects associated with tails are
contained in the second term and start at 4PN order
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Multipolar post-Minkowskian and matching approach

Radiative moments at future null infinity

@ Correct for the “tortoise” logarithmic deviation of retarded time in harmonic
coordinates with respect to the actual null coordinate

radiative coordinates harmonic coordinates logarithmic deviation

. —_——
null coordinate —~N—
A R 2GM 1
—~ - o B T 3ln(r>+0(>
c c C cTp T
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Multipolar post-Minkowskian and matching approach

Radiative moments at future null infinity

@ Correct for the “tortoise” logarithmic deviation of retarded time in harmonic
coordinates with respect to the actual null coordinate

radiative coordinates harmonic coordinates logarithmic deviation

null coordinate e N\ —~N—
A~ R 2GM 1
o= or-d el - (D)o (1)
c c C cTp T

@ Asymptotic waveform is parametrized by radiative moments Uy, and Vp,

1 & 1
ATT — Ni_oUiir_of ab(iNar—1 Vivor— o =
ij RZ L—2Uijr—2(u) +e€ b(i+VaL—1 Vj)bL 2(u) + (R2)

£=2 mass-type current-type
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Multipolar post-Minkowskian and matching approach

Radiative moments at future null infinity

@ Correct for the “tortoise” logarithmic deviation of retarded time in harmonic
coordinates with respect to the actual null coordinate

radiative coordinates harmonic coordinates logarithmic deviation

null coordinate e N\ —~N—
A~ R 2GM 1
o= or-d el - (D)o (1)
c c C cTp T

@ Asymptotic waveform is parametrized by radiative moments Uy, and Vp,

1 & 1
ATT — Ni_oUiir_of ab(iNar—1 Vivor— o =
ij RZ L—2Uijr—2(u) +e€ b(i+VaL—1 Vj)bL 2(u) + (R2)

£=2 mass-type current-type

© The radiative moments Uy, and V7, are the observables of the radiation field

at future null infinity
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Multipolar post-Minkowskian and matching approach

The 4.5PN radiative quadrupole moment

+oo
Ui (t) = I () + G dril(t —7) [2 In <T> + H]

) 03 0 27-0 6
1.5PN tail integral
G| 2 [t 3y
+ 5{—7/ dTI((l‘l)L-IJ(-‘;)a(t — T) + instantaneous terms}
¢ 0

2.5PN memory integral

G2M? [t ) of T 57 T 124627
arlP(t—7) 2 (— ) + = In | —
T s /0 Ty =) [ . <2TO> *35 n(m) + 22050]

3PN tail-of-tail integral

G3M? [T 4. 5( 7 129268 428
drl(t—71) |z (— |+ + o+ 7
te /O Tl (=) {3 " <27’0> Tt o T 315”]

4.5PN tail-of-tail-of-tail integral
1
+0 (=
clo0
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Multipolar post-Minkowskian and matching approach

Gravitational wave tails
[Bonnor 1959; Bonnor & Rotenberg 1961; Price 1971; Blanchet & Damour 1988, 1992; Blanchet 1993, 1997]

field‘ point

The tails are produced by backscatter

of linear GWs generated by the variations
of I;; off the curvature induced by the
matter source’s total mass M

R/

matter source

. 4G GM [* uw—t
tail (4)

— 00

The tail is dominantly a 1.5PN effect
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Multipolar post-Minkowskian and matching approach

3.5PN energy flux of compact binaries

1PN 1.5PN tail
FW = 352éy2x5{1 =+ <— 1323467 ?; ) x4 drad/?
2.5PN tail
T 927165 5\ 8191 583 \ .
+( o072 s04 " T 18" >x+< 672 24”)“
3PN tail-of-tail
[6643739519 16 5 1712 856, oo
69854400 ' 3 105 £ 105
. <134543 41 2) 903 7754 2
7776 48 30247 T 34
16285 214745 193385 1
i <_ 504 1728 U 3024 ”2) ma'? 40 (c8>}
3.5PN tail
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Multipolar post-Minkowskian and matching approach

Measurement of PN parameters [Lico,virgo collaboration 2016]

10! ! 1 ]
GWI50914
GWISI226 | ..
@ GWIS1226,GWI50914 :

; , v [ | 3 i
10° : | '
' ||
: n

6|
e N

10~

OPN 0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN
PN order
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Multipolar post-Minkowskian and matching approach

Measurement of PN parameters [Lico,virgo collaboration 2016]

10! —d 1 1
] GWI50914 H
h ! GWISI226 | ..
1@ GWI512264GW150914
1.7 | v [ | ’ i
[ | i
ﬁ' 10° 4 , j ' 2
1 : B\
B
] test of the
= 4 i
01 e | @ tail effect
: \ J
n \ V4
\f

Luc Blanchet (GR

0PN 0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN

PN order
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Multipolar post-Minkowskian and matching approach

4-5PN CoeffiCiel’lt in the GW ﬂUX [Marchand, Blanchet, Faye 2017]

field point

(dE>4'5PN 328, {(265978667519 6848

i 5G 0" 745113600 105 'F
34U ey [206224 41, N
105 * 22176 12"

1
133112905 , 371941 5\ )
290304 38016

matter source

@ The 4.5PN tail effect represents the complete 4.5PN coefficient in the GW
energy flux in the case of circular orbits

o Perfect agreement with results from BH perturbation theory in the small
mass ratio limit v — 0 [Tanaka, Tagoshi & Sasaki 1996]

@ However the 4PN term in the flux is still in progress
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FLUX-BALANCE EQUATIONS FOR ENERGY & MOMENTA
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Flux-balance equations for energy, momenta and center of mass

Gravitational radiation reaction calculations

@ For general matter systems the 4PN radiation reaction derives from radiation
reaction potentials valid in a specific extension of the [Burke & Thorne 1971] gauge

2.5PN radiation reaction
IR R
gz;w ij 0+Oo dr 10(t - 7) [m <2:O) + E] +0 <Clg
4PN radiation reaction tail

)
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Flux-balance equations for energy, momenta and center of mass

Gravitational radiation reaction calculations

@ For general matter systems the 4PN radiation reaction derives from radiation
reaction potentials valid in a specific extension of the [Burke & Thorne 1971] gauge

2.5PN radiation reaction
—_———

. G ijr0) Gl 1 e 1 o
iet=— gt g {1895”U Lk = mgra¥ I

2 +oo
_AaGM x% dr I,,;(;) (t—1) [ln <T) + 11] +0 <1)

5¢8 0 279 12 c®

4PN radiation reaction tail

e GT1 h oo 4 5
yre = = {x”k 19— e —eijra’’ J;\z)} +0 <c >

' 21 Ik

@ The flux balance equations for energy and momenta are obtained from the
radiation reaction potentials by integrating the matter equations of motion
V., T* = (0 over the source
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

@ Well known results for the energy and angular momentum

dE 1 11 1 1
e _ ¢ (I<3>I<3> L1 {1(4)1(4) N GJ(s)J@D Lo <)
4571 i e

dt S \59 T 2 [189 HkTik
dsi _ G 2.0 1 11e @0 320,50 1
Pl (5Ijl La + 3 | gz limfem + 5750 T | | +O( 5
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

@ Well known results for the energy and angular momentum

e _ ¢ (1I<3>I<3>+ 1 { 1 ;@ J<3)J<3>]> +O<cls)

dt S \5 9 189wk uk F

dfi G () 1(3) 3) ;@ | 325050 1
Pl (5Ijz Ly + > 63IJlmIklm TR T Rl
@ And for linear momentum (this effect responsible for the recoil of the source)

dp, G2 16 1
i _ [ 107 16 e J<3>] Lo (cg>

dt 63 WkTik T 45
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Flux-balance equations for energy, momenta and center of mass

Radiation reaction derivation of balance equations

@ Well known results for the energy and angular momentum

dE G (1 (3) 7(3) 1 1 (4) 7(4) 16 7(3) (3) 1
dt c® (51” Iij ¢ | 189 Wk ik T 457 Jij © c8
dJ; G 2 (2) 7(3) 1 1 (3) +(4) 32 (2) 7(3) 1
dt c5€ijk (SIjl T 2 6377 Liam 45"t Tk © 8

@ And for linear momentum (this effect responsible for the recoil of the source)

3) 73) 1
Bt t]o(3)
© However we find also for the center-of-mass position [Blanchet & Faye 2018

-0 ()

Strangely this formula does not seem to appear in the GW litterature
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2
2 ;@)

63 ijk* ik

dp

a _ G
dt

c?

16
45

_ 26 @

21¢7 ijk* ik

dG;
dt

2
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

@ Introduce a retarded null coordinate u satisfying

‘g‘“’@uuﬁyu =0 ‘

@ For instance choose u =t — r,/c with the tortoise coordinate

r. =14+ 2G2]\4 In <r> @) (1>
c 70 r
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

@ Perform a coordinate change (¢,x) — (u,X) in the conservation law of the
pseudo-tensor 9,7 = 0 to get

0 o :
_~ | 10 b . _
u (x,u+1rye/c) —n,T (x,qur*/c)} +8z{7' (x,u+r*/c)} 0
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

@ Perform a coordinate change (¢,x) — (u,X) in the conservation law of the
pseudo-tensor 9,7 = 0 to get

0 (x, u 4 7, /c) — niTH(x, u+r*/c)} +0; {T“ (%, u+r*/c)} =0

cOu
@ Integrating over a volume V tending to infinity with « =const
dE ’
@ = —C . dSl T(O;W(X,U+T*/C)
dJ; :
T —5ijk/ ds; 27 Té\l/\/(X,u +7./c)
U oV
dP? -
= — ds; 4 .
T /av i Tew (X, u+7ry/c)
d(;Z 1 ij
T = P, — C/avds (a: TGW T’*’TG<N) (x,u+1y/c)

71 / 104
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

@ Perform a coordinate change (¢,x) — (u,X) in the conservation law of the
pseudo-tensor 9,7 = 0 to get

%[T“O(X,U+T*/C) fniT’”(x,qur*/c)] +0; {7””(X,U+T*/C)] =0
cou

@ Integrating over a volume V tending to infinity with « =const

E= / d3x [7—00 —nt TOi] (x,u+1s/C)
%

1 .
Ji = = €ijk / d3x 27 |:Tk0 —nl Tkl] (x,u+7y/c)
¢ %

| . o
PZ:7/d3x[7-01—n17”}(x,u+7‘*/c)
cJy
G; = 2 vd3x[xz(7_oo —nl TOJ) — 7Ty (TO’ —nl TU):| (x,u+14/C)

2 / 104
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Flux-balance equations for energy, momenta and center of mass

Direct calculation of the GW fluxes at infinity

In terms of multipole moments I, and J, this gives up to order O(G?)

dE = @ 041) ,(0+1) . be (e41) (041
du:—zcuﬂ{aﬂé ] )+;2J£ Ly

(=2

dJ; = @ O et de ) )
Q= e le{’” Loy + 5 v =i
(=2

dp; R (0+2) 7(£+1) (+1) p(e+1) | 9t 5(£+2) f(£+1)
= — einL IL +f25ijkIjL71JkL_1+672JiL JL

dG; X G C41) F(041) | B (641) (041
du =P - 02£+3{h‘3[i(L )Ié )+07Ji(L )Jé )
=2

[Blanchet & Faye 2018]
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Fokker approach to the PN equations of motion

FOKKER APPROACH TO THE PN EOM
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Fokker approach to the PN equations of motion

The 1PN equations of motion

[Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1938]

Bza €

B#A D#B

1 3
+ 02<v§1 —|—2v?3 —4vy - v — 5(1}3 -nAB)2>]

+Z Gm vAB[nAB (3vp — 4v,)] _,Z Z

G? mBmD
3 nBD
Arapry

Jlette
*J. DROSTE® 3
dQTA GmB Gmc GmD "AB "TBD
B =) sz omap|l-4) ==y o (1=
B#A iB c#A CTAC pup ©TBD BD
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Fokker approach to the PN equations of motion

4PN: state-of-the-art on equations of motion

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term

radiation reaction

1 5G*mimy  4G*m3 i
7 3 3 +... n12+...
¢ 12 12
1 1 1 1 1 1
+ci4[]+ci5[]+ciﬁ[]+ci7[] +78|: .]+O<Cg)
—_—— = Y~ Y~ ~——
2PN 2.5PN 3PN 3.5PN 4PN

radiation reaction conservative & radiation tail

Jaranowski & Schiafer 1999; Damour, Jaranowski & Schifer 2001ab]

[
3PN [Blanchet-Faye-de Andrade 2000, 2001; Blanchet & lyer 2002]
[ltoh & Futamase 2003; Itoh 2004]
[Foffa & Sturani 2011]
[Jaranowski & Schafer 2013; Damour, Jaranowski & Schafer 2014]
4PN [Bernard, Blanchet, Bohé, Faye, Marchand & Marsat 2015, 2016, 2017ab]

[Foffa & Sturani 2012, 2013] (partial results)

ADM Hamiltonian
Harmonic EOM
Surface integral method

Effective field theory

ADM Hamiltonian
Fokker Lagrangian
Effective field theory

Fields Institute
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Fokker approach to the PN equations of motion

The Fokker Lagrangian approach to the 4PN EOM

Based on collaborations with

Laura Bernard, Alejandro Bohé, Guillaume Faye,
Tanguy Marchand & Sylvain Marsat

[PRD 93, 084037 (2016); 95, 044026 (2017); 96, 104043 (2017); 97, 044023 (2018); PRD 97, 044037 (2018)]
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Fokker approach to the PN equations of motion

Fokker action of IN particles rouer 1020]

@ Gauge-fixed Einstein-Hilbert action for N point particles

Sef. = 167TG/d4 R “QWWFU}
| —

Gauge-fixing term

— ZmAcg/dt \/—(gm,)A il /e?
A

N point particles

@ Fokker action is obtained by inserting an explicit PN solution of the Einstein
field equations
Guv(X,t) — G (X3y5(t), v5(t), )
@ The PN equations of motion of the N particles (self-gravitating system) are

5Se _ OLf <8LF>

dys  Oya dt \dua

Luc Blanchet (GR 2 PN methods for GWs Fields Institute 78 / 104



Fokker approach to the PN equations of motion

The gravitational wave tail effect

[Blanchet & Damour 1988; Blanchet 1993, 1997; Foffa & Sturani 2011; Galley, Leibovich, Porto et al. 2016]

field point

@ In the near zone (4PN effect)

o= L] ldtdt 19w 19(¢)

5¢8

matter source
@ In the far zone (1.5PN effect)

. 4G GM t—t
tail (4)
e N B QL] ( - >
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Fokker approach to the PN equations of motion

Problem of the IR divergences

[t'Hooft & Veltman 1972; Bollini & Giambiagi 1972; Breitenlohner & Maison 1977]

@ Einstein’s field equations are solved in d spatial dimensions (with d € C) with
distributional sources. In Newtonian approximation

2(d — 2)

AU = —4
a1

Gp

@ For two point-particles p = m1(q)(x — y1) + madq)(x — y2) we get

_2(d—2)k Gmy Gma , I (%3
Ul 1) = d—1 (|X—Y1|Ul_2 * |X—y2|d_2> with k=

@ Computations are performed when R(d) is a large negative number, and the
result is analytically continued for any d € C except for isolated poles

@ Dimensional regularization is then followed by a renormalization of the
worldline of the particles so as to absorb the poles oc (d — 3)~!
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Fokker approach to the PN equations of motion

Problem of the IR divergences

@ The tail effect implies the appearance of IR divergences in the Fokker action
at the 4PN order

@ Our initial calculation of the Fokker action was based on the Hadamard
regularization to treat the IR divergences (FP procedure when B — 0)

© However computing the conserved energy and periastron advance for circular
orbits we found it does not agree with GSF calculations

@ The problem was due to the HR and conjectured that a different IR
regularization would give (modulo shifts)

Gimm3m3 /. .
L=L"R+ Tw (01(n12012)2 + f’2U%2)
12

two ambiguity parameters §; and d2

@ Matching with GSF results for the energy and periastron advance uniquely
fixes the two ambiguity parameters and we are in complete agreement with
the results from the Hamiltonian formalism [DJs]
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Fokker approach to the PN equations of motion

Conserved energy for a non-local Hamiltonian

@ Because of the tail effect at 4PN order the Lagrangian or Hamiltonian
becomes non-local in time

H [Xa p] = HO (X7 p) + Hta” [X; P]
non-local piece at 4PN
@ Hamilton's equations involve functional derivatives

da? _O0H dp; _(5H
dt — op; dt ot

© The conserved energy is not given by the Hamiltonian on-shell but
E = H + AHA® + AHPC where the AC term averages to zero and

2GM 2G?M 2
AHDij 03 J—_'GW:7 <(I(3)) >

5¢5 ij

@ On the other hand [pJs] perform a non-local shift to transform the
Hamiltonian into a local one, and both procedure are equivalent
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Fokker approach to the PN equations of motion

Conserved energy for circular orbits at 4PN order

@ The 4PN energy for circular orbits in the small mass ratio limit is known from
GSF of the redshift variable [Le Tiec, Blanchet & Whiting 2012: Bini & Damour 2013]

@ This permits to fix the ambiguity parameter o and to complete the 4PN
equations of motion

2 3 v 27 19 v?
EAPN _ _HCT ) sV _et P e
2 + 4 12 v 8 + 8" 21

+<_675 [34445 205 Q]V 155 » 35 s)xg

64 576 96 06" " 5184”7

3969 123671 9037 2 896 448
+ (- 123 + ==+ — 15 In(16x)| v

T 5760 1536 15
498449 3157 ,] o 301 5 TT .\ .
{ 3456 ' 576 } s e ) ”
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Fokker approach to the PN equations of motion

Periastron advance for circular orbits at 4PN order

The periastron advanced (or relativistic precession) constitutes a second invariant
which is also known in the limit of circular orbits from GSF calculations

K4PN—1+3x+(2277u)x2

+ <1;5 + [—6;19 1322371'2] v+ 71/2) z3
n (2835 L [_ 275941 480077r2 1256 In
8 360 3072 15
592 o _ 1458 3 2512'YE:| y
15 5 15
5861 451 98
[12 _ 327r2} 2 _ 27y3> 24
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Fokker approach to the PN equations of motion

Dimensional regularization of the IR divergences

@ The Hadamard regularization of IR divergences reads

HR _ s, (" B
Be=pr L Px () e

@ The corresponding dimensional regularization reads

d?x
I%R = / [d*S F(d) (X)
r>R £q

@ The difference between the two regularization is of the type (¢ = d — 3)

1= Y[t ()] [ a0 a0
T e~

IR pole
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Fokker approach to the PN equations of motion

Ambiguity-free completion of the 4PN EOM

[Marchand, Bernard, Blanchet & Faye 2017]

@ The tail effect contains a UV pole which cancels the IR pole coming from the
instantaneous part of the action

. 8G2M .. [T cqT 1 1
tail — _ ij o (7)
i rs & ; dr [ln ( 2%, ) 60} L(t—7)+0 ( )

UV pole

@ Adding up all contributions we obtain the conjectured form of the ambiguity
terms with the correct values of the ambiguity parameters J; and ¢,

@ It is likely that the EFT formalism will also succeed in deriving the full EOM
without ambiguities [Porto & Rothstein 2017]

@ The lack of a consistent matching between the near zone and the far zone in
the ADM Hamiltonian formalism [pJs] forces this formalism to be still plagued
by one ambiguity parameter
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Post-Newtonian versus perturbation theory

PN VERSUS PERTURBATION THEORY

Luc Blanchet 2) PN methods for GWs Fields Institute 87 / 104



Post-Newtonian versus perturbation theory

Post-Newtonian versus perturbation theory

Luc Blanchet (

2
m m./(m +m.)

1/4

Symmetric Mass Ratio

A

3

Post-
Newtonian

SR

N\

Perturbation Theory

Squared Velocity ~ Compactness

PN methods for GWs
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Post-Newtonian versus perturbation theory

Post-Newtonian versus perturbation theory

2
m m./(m +m.)

A

1/4 s /

e m, ~

1
k=) | |
5 1 |
> Post- | r |
0 B | .~ |
g Newtonian | |
Q - |
=] { R ] |
[}
£ m,/
3 =
]

Perturbation Theory
0 : > V2~G(m_+m )/r
Squared Velocity ~ Compactness c? 12
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Post-Newtonian versus perturbation theory

Problem of the gravitational self-force (GSF)

[Mino, Sasaki & Tanaka 1997; Quinn & Wald 1997; Detweiler & Whiting 2003]

@ A particle is moving on a background
space-time of a massive black hole

@ lts stress-energy tensor modifies the
background gravitational field

@ Because of the back-reaction the motion of
the particle deviates from a background
geodesic hence the gravitational self force

)

The GSF is computed to high accuracy by

@ numerical methods [Sago, Barack & Detweiler 2008; Shah, Friedmann & Whiting 2014]

(] analytical ONes [Mano, Susuki & Takasugi 1996ab; Bini & Damour 2013, 2014]
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Post-Newtonian versus perturbation theory

Looking at the conservative part of the dynamics
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Post-Newtonian versus perturbation theory

Choice of a gauge-invariant observable peueier 2008

@ For exactly circular orbits the geometry admits a
helical Killing vector with

K"9, = 0, +Q0, (asymptotically)

@ The four-velocity of the particle is necessarily

tangent to the Killing vector hence p

Kf =z ’U,lf u
© This z; is the Killing energy of the particle

associated with the HKV and is also a redshift

@ The relation z1(2) is well-defined in both PN and tme
GSF approaches and is gauge-invariant

black hole space
space
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Post-Newtonian versus perturbation theory

Post-Newtonian calculation of the redshift factor

[Blanchet, Detweiler, Le Tiec & Whiting 2010, 2011; Blanchet, Faye & Whiting 2014, 2015]

In a coordinate system such that K#90,, = 0; +w d, we have

]V/'
y
S~

1 vy 1/2
21 = 5 — - (guu>1 by ro~a
~—— C ~

Uy 12 ~

regularized metric

One needs a self-field regularization

@ Hadamard “partie finie" regularization is extremely useful in practical
calculations but yields (UV and IR) ambiguity parameters at high PN orders

@ Dimensional regularization is an extremely powerful regularization which
seems to be free of ambiguities at any PN order

Fields Institute 92 / 104

Luc Blanchet (G PN methods for GWs



Post-Newtonian versus perturbation theory

Standard PN theory agrees with GSF calculations

121 41
ugp = —y — 2y° = 5y° + <— + 772) y'

3 32

_TTTOT gy AO2THS2T08 L 0

55125 7 YT T 9823975
09186302y BTS2 1y

1157625 7 165375

@ Integral PN terms such as 3PN permit checking dimensional regularization

@ Half-integral PN terms starting at 5.5PN order permit checking the
non-linear tails (and tail-of-tails)
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Post-Newtonian versus perturbation theory

Standard PN theory agrees with GSF calculations

121 41
utsp——y—2y2—5y3+<—+ 2)y4

3 32
<—11§7 + % - %’VE_% lﬂ(16y))

_TTTOT gy 40282008

55125 7 YT T 9823275
OISR 1y BT 1y

1157625 7 165375

@ Integral PN terms such as 3PN permit checking dimensional regularization

@ Half-integral PN terms starting at 5.5PN order permit checking the
non-linear tails (and tail-of-tails)
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Post-Newtonian versus perturbation theory

Standard PN theory agrees with GSF calculations

[ 121 41
Usp = —Y — 2y 5y° (—3 + 327T2> y!
1157 | 677 , 128 64
L L B I s MR T
( 5 teet 5 e y)>
956 61y LIO06T ajo 51256 o SI0TTE g,
~ 1057 525 567 3675
21392 g\ 0 BI61IS0T Ly 2016 g o
525 467775 2205
| LIT2BTTON 1y AO2TSTOR 1,
55125 9823275
991865027 4, /5 2UT5E 11y o
FIZEVVET 21/2 1)) ) 22220092 11y
1157625 ¢ YT 1gs375 Y

@ Integral PN terms such as 3PN permit checking dimensional regularization

@ Half-integral PN terms starting at 5.5PN order permit checking the

machinery of non-linear tails (and tail-of-tails)
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POST-NEWTONIAN VERSUS POST-MINKOWSKIAN
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Post-Newtonian versus post-Minkowskian

The post-Minkowskian approximation

m/r~O(G)
Black Holes
1

o
&
&Y
S
S
O
N2
>

a2 . f &
4 || Post-Newtonian &S
£ K\ Tachyons
3 &
g )
£
o
o

UR
Post-Minkowskian Scattering

A

- » v2~O(1/c?)
Squared Velocity 1

@ The ultra relativistic gravitational scattering of two particles has been solved
up to the 2PM order [Westpfahl et al. 1980, 1985; Portilla 1980]

@ A closed-form expression for the Hamiltonian of N particles at the 1PM order
has been found [Ledvinka, Schifer & Bizak 2008]
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Post-Newtonian versus post-Minkowskian

Comparing 4PN with 1PM sinchet & Fokes 2015

@ The 1PM field equations of N particles in harmonic coordinates read
N
1 oo
R — b E Gma/ dr, u5u55(4)(:r — Ya)

a=1 -

@ The Lienard-Wiechert solution is

B (2) = Gmg ut
62 z : T.ret ku ret

where r/et = |z — 2| and (ku)'tt is the redshift factor

@ In small 1PM terms trajectories are straight lines hence the retardations can
be explicitly performed

W (1) 4 Z Gmg ubiul
e 1+ naua
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Post-Newtonian versus post-Minkowskian

Comparing 4PN with 1PM sinchet & Fokes 2015

@ This yields the 1PM equations of motion but in PN like form?

dva Gmy
— _~72 Z 373 [ 25?1{; — 1D)ng
b#a ab Yab

Vq
+ Yo (_460,1)70, (nabva) + (26517 + 1)’7b(nabvb)) 0217:|

@ These equations of motion are conservative and admit a conserved energy

E= Zmac Yo + ZZ Gma:?;f {’Ya (26317 +1-— 4%%!7)

a b#a TabYap @

) .
v Fab(Nabvs) — (VapVp
+ 22 (26 — 1) ——— “(“72)_ (V1) 2}
Ta (vap = 72y)Yab + 2 (Tab(navvs) — (vapvs))
2yap = 14 (naptia)? and €qp = —(uatip)
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Post-Newtonian versus post-Minkowskian

Comparing 4PN with 1PM sinchet & Fokes 2015

@ The 1PM Lagrangian in harmonic coordinates is a generalized one

_ M c? i i
T DR S
a ,yll a

——

accelerations

@ The 1PM Lagrangian can be computed up to any PN order from the terms of
order G in the conserved energy say £ =) MaC?y, + €

“+o0 /
A:FP/ d—cs(ma,i‘})
. c c

© We checked in a particular case that the Hamiltonian differs by a canonical
transformation from the closed-form expression of the 1PM Hamiltonian in
ADM coordinates [Ledvinka, Schifer & Bitak 2008]

@ All the results reproduce the terms linear in G in the 4PN harmonic
coordinates equations of motion and Lagrangian [BBBFMM]
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Spin effects in compact binary systems

SPIN EFFECTS IN COMPACT BINARIES
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Spin effects in compact binary systems

Spinning particles in a pole-dipole approximation

© The spin degrees of freedom are described by an
orthonormal moving tetrad along the worldline

guveq'eg” =nap

particle's worldline
parametrized by T
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Spin effects in compact binary systems

Spinning particles in a pole-dipole approximation

© The spin degrees of freedom are described by an
orthonormal moving tetrad along the worldline

guveq'eg” =nap

[T
u 4
,'I eA}l @ The rotation tensor of the tetrad is defined as
De ,*
3 A _ _ow
r dr 2eay

particle's worldline
parametrized by T
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Spin effects in compact binary systems

Spinning particles in a pole-dipole approximation

© The spin degrees of freedom are described by an
orthonormal moving tetrad along the worldline

guveq'eg” =nap

eA}l @ The rotation tensor of the tetrad is defined as
De ,"
dr

© Because of the orthonormality condition the rotation
tensor is antisymmetric

= —0"ey,

QW — _QvH

particle's worldline
parametrized by T
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Spin effects in compact binary systems

Spinning particles in a pole-dipole approximation

© The spin degrees of freedom are described by an
orthonormal moving tetrad along the worldline

guveq'eg” =nap

eA}l @ The rotation tensor of the tetrad is defined as

De ,*

© Because of the orthonormality condition the rotation
tensor is antisymmetric

QW — _QvH

particle's worldline ) )
parametrized by T @ The dynamical degrees of freedom of the particle are
the particle’s position and the moving tetrad, and the

internal structure of the particle is neglected
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Spin effects in compact binary systems

Action for a system of spinning point particles

[Hanson & Regge 1974; Bailey & Israel 1975]

@ Following the spirit of effective field theories we define a general action
principle

+oo
Sites)= 3 [ arn(w0.g.)

particles ¥
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Spin effects in compact binary systems

Action for a system of spinning point particles

[Hanson & Regge 1974; Bailey & Israel 1975]
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Action for a system of spinning point particles

[Hanson & Regge 1974; Bailey & Israel 1975]

@ Following the spirit of effective field theories we define a general action
principle

+oo
Sites)= 3 [ arn(w0.g.)

particles

@ The particle's linear momentum and spin tensor are the conjugate momenta

oL oL
Pr= Gun S = 250w

© We just impose that the action obeys basic symmetry principles:
o It should be a Lorentz scalar
e It should be a covariant scalar
L
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Spin effects in compact binary systems

Action for a system of spinning point particles

[Hanson & Regge 1974; Bailey & Israel 1975]

@ Following the spirit of effective field theories we define a general action
principle

+oo
Sites)= 3 [ arn(w0.g.)

particles

@ The particle's linear momentum and spin tensor are the conjugate momenta

oL oL
Dy = 57— Spy =2 ”
Out IO
© We just impose that the action obeys basic symmetry principles:
o It should be a Lorentz scalar
e It should be a covariant scalar
9 oL
Ogpv
o It should be invariant by worldline reparametrization (7 — A7)

= p“u” + S‘upQW)

1 v
L=p,u"+ ESWQ”
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Spin effects in compact binary systems

Equations of motion and of spin precession

@ Varying the action with respect to the tetrad e ,” (holding the metric g,,,,
fixed) gives the spin precession equation

DS,
dr

= Puly — Py
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@ Varying the action with respect to the tetrad e ,” (holding the metric g,,,,
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DS,
dr

= Puly — Py

@ Varying with respect to the position r# gives the famous
Mathisson-Papapetrou [Mathisson 1937; Papapetrou 1951] equation of motion
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Spin effects in compact binary systems

Equations of motion and of spin precession

@ Varying the action with respect to the tetrad e ,” (holding the metric g,,,,
fixed) gives the spin precession equation

DS,
dr

= Puly — Py

@ Varying with respect to the position r# gives the famous
Mathisson-Papapetrou [Mathisson 1937; Papapetrou 1951] equation of motion

Dp 1, -
ar — p" R

@ Varying with respect to the metric g,,,, (keeping eA[uéeAu] = 0) gives the
stress-energy tensor of the spinning particles [Trautman 1958; Dixon 1979]

5(4)(x—r §W(x —7)
dr p -V / dr §Pl ) 2227
/ vy v—9

particles
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Spin effects in compact binary systems

Spin suplementary condition (SSC)

@ To correctly account for the number of degrees of freedom associated with
the spin we impose a suplementary condition [Tulczyjew 1957, 1959
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@ To correctly account for the number of degrees of freedom associated with
the spin we impose a suplementary condition [Tulczyjew 1957, 1959

@ With the latter choice for the SSC, the particle’s mass m? = —g"“p,p, and
the four-dimensional spin magnitude s? = S#¥S,,, are constant
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Spin suplementary condition (SSC)

@ To correctly account for the number of degrees of freedom associated with
the spin we impose a suplementary condition [Tulczyjew 1957, 1959

@ With the latter choice for the SSC, the particle’s mass m? = —g"“p,p, and
the four-dimensional spin magnitude s? = S#¥S,,, are constant
Dm Ds
— =0 — =0
dr dr
@ The link between the four velocity u* and the four linear momentum p* is
entirely specified, hence the Lagrangian is specified. At linear order in the
spins we have
Pt = mur + O(5?%)
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Spin suplementary condition (SSC)

@ To correctly account for the number of degrees of freedom associated with
the spin we impose a suplementary condition [Tulczyjew 1957, 1959

@ With the latter choice for the SSC, the particle’s mass m? = —g"“p,p, and
the four-dimensional spin magnitude s? = S#¥S,,, are constant

Dm Ds
— =0 — =0
dr dr
@ The link between the four velocity u* and the four linear momentum p* is
entirely specified, hence the Lagrangian is specified. At linear order in the
spins we have
Pt = mur + O(5?%)
@ The equation for the spin reduces to the equation of parallel transport

DS,.
dr

= O(S?)
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