Quasinormal modes 2: Spinning black holes

Aaron Zimmerman XII Mexican School on Gravitation and Mathematical Physics

November 6, 2018

Last time

- Scalar wave equation: $\Box_g \Phi = -4\pi T$
- Separation of variables:

$$\Phi_{\omega lm} \sim e^{-i\omega t} \frac{u_{\omega lm}(r)}{r} Y_{lm}(\theta, \phi)$$

• Radial equation:

$$\frac{d^2 u_{\omega lm}}{dr_*^2} + \left(\omega^2 - V\right) u_{\omega lm} = 0$$
$$V = \left(1 - \frac{2M}{r}\right) \left(\frac{l(l+1)}{r^2} + \frac{2M}{r^3}\right)$$

Last time

• For orbiting source with a few freq

$$\frac{d^2 u_{\omega lm}}{dr_*^2} + (\omega^2 - V)u_{\omega lm} = S_{\omega lm}(r)$$

- Decompose source
- GF via series sln or direct integration
- Integrate GF over source moments
- Assemble
- Or, solve 1+1 D wave eqn with source

Last time

- Outgoing BCs only for special freq
- Leaver's method gives

$$\omega_{lmn}$$
 $u_{lmn}(r)$ $A_{
m out}$

- Similar series expansions get $\partial_{\omega}A_{\mathrm{in}}$
- This gives GF, use source evaluated at QNMs to get amplitudes and phases modes
- Grav waves treated the same: ${}_{s}\psi_{\omega lm}
 ightarrow h_{\mu
 u}$

Part 1 ROTATING BLACK HOLES

Rotating black holes: Kerr

- Parametrized by mass and spin parameter M, a
- Horizon at $r_{+} = M(1 + \sqrt{1 a^2/M^2})$
- Frame dragging: $g_{t\phi} \neq 0$
- Ergoregion

$$r^2 - 2Mr + a^2 \cos^2 \theta < 0$$

• Horizon rotates at $\Omega_H \propto a$

Rotating black holes: Kerr

- Parametrized by mass and spin parameter M, a
- Horizon at $r_{+} = M(1 + \sqrt{1 a^2/M^2})$
- Frame dragging: $g_{t\phi} \neq 0$
- Ergoregion

$$r^2 - 2Mr + a^2 \cos^2 \theta < 0$$

• Horizon rotates at $\Omega_H \propto a$

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -\left(1 - \frac{2Mr}{r^2 + a^2\cos^2\theta}\right)dt^2 + \frac{r^2 + a^2\cos^2\theta}{\Delta}dr^2 + (r^2 + a^2\cos^2\theta)d\theta^2 - \frac{4Mar\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta((r^2 + a^2)^2 - a^2\Delta\sin^2\theta}{r^2 + a^2\cos^2\theta}d\phi^2 - \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta((r^2 + a^2)^2 - a^2\Delta\sin^2\theta}{r^2 + a^2\cos^2\theta}d\phi^2 - \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta((r^2 + a^2)^2 - a^2\Delta\sin^2\theta}{r^2 + a^2\cos^2\theta}d\phi^2 - \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 - \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dr^2 + \frac{\sin^2\theta}{r^2 + a^2\cos^2\theta}dtd\phi + \frac{\sin$$

Rotating black holes: Kerr

- Parametrized by mass and spin parameter M, a
- Horizon at $r_{+} = M(1 + \sqrt{1 a^2/M^2})$
- Frame dragging: $g_{t\phi} \neq 0$
- Ergoregion

$$r^2 - 2Mr + a^2 \cos^2 \theta < 0$$

• Horizon rotates at $\Omega_H \propto a$

$$\Delta = r^2 - 2Mr + a^2 = (r - r_+)(r - r_-)$$

Weyl curvature scalar

 For Kerr spacetime, curvature quantities most natural

$$\Psi_4 = C_{\mu\nu\rho\sigma} n^{\mu} m^{\nu*} n^{\rho} m^{\sigma*}$$

• Example: flat space perts $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$l^{\mu} = \frac{(\partial_t)^{\mu} + (\partial_r)^{\mu}}{\sqrt{2}} \qquad n^{\mu} = \frac{(\partial_t)^{\mu} - (\partial_r)^{\mu}}{\sqrt{2}}$$
$$m^{\mu} = \frac{(\partial_{\theta})^{\mu} + i \csc \theta (\partial_{\phi})^{\mu}}{\sqrt{2}r}$$

Weyl curvature scalar

 For Kerr spacetime, curvature quantities most natural

$$\Psi_4 = C_{\mu\nu\rho\sigma} n^{\mu} m^{\nu*} n^{\rho} m^{\sigma*}$$

• Example: flat space perts $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

$$l^{\mu} = \frac{(\partial_{t})^{\mu} + (\partial_{r})^{\mu}}{\sqrt{2}} \qquad n^{\mu} = \frac{(\partial_{t})^{\mu} - (\partial_{r})^{\mu}}{\sqrt{2}}$$
$$m^{\mu} = \frac{(\partial_{\theta})^{\mu} + i \csc \theta (\partial_{\phi})^{\mu}}{\sqrt{2}r}$$
$$\Psi_{4} = -\ddot{h}_{+} + i\ddot{h}_{\times}$$

Perturbations of Kerr

$${}_{s}\psi_{lm\omega} = e^{-i\omega t + im\phi}{}_{s}R_{lm\omega}(r){}_{s}S_{lm\omega}(\theta)$$

$$s = -2: \ _{s}\psi = \Psi_4 \to h_{\mu\nu}$$

Black hole perturbation theory

• Angular equation

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dS_{lm\omega}}{d\theta} \right) + V_{\theta}(\omega, A_{lm}) S_{lm\omega} = 0$$

Potential is more complicated than Schw

$$V_{\theta} = {}_{s}E_{lm\omega} - \frac{m^{2}}{\sin^{2}\theta} - s^{2}\cot^{2}\theta - s^{2} + a^{2}\omega^{2}\cos^{2}\theta - 2a\omega s\cos\theta$$

 Solutions are deformations of (spin-weighted) spherical harmonics

Black hole perturbation theory

• Radial equation for $u_{lm\omega} = \Delta^{s/2} \sqrt{r^2 + a^2} R_{lm\omega}$

$$\frac{d^2 u_{lm\omega}}{dr_*^2} + V_r \, u_{lm\omega} = S_{lm\omega}(r)$$

$$V_{r} = \left(\omega - \frac{am}{r^{2} + a^{2}}\right)^{2} - 2is\frac{r - M}{r^{2} + a^{2}}\left(\omega - \frac{am}{r^{2} + a^{2}}\right) + \frac{\Delta}{r^{2} + a^{2}}(4ir\omega s - \lambda) + F(r, s)$$

$${}_{s}\lambda_{lm\omega} = {}_{s}E_{lm\omega} - s(s+1) + a^{2}\omega^{2} - 2am\omega$$

Black hole perturbation theory

• Radial equation for $u_{lm\omega} = \Delta^{s/2} \sqrt{r^2 + a^2} R_{lm\omega}$

$$\frac{d^2 u_{lm\omega}}{dr_*^2} + V_r \, u_{lm\omega} = S_{lm\omega}(r)$$

$$V_{r} = \left(\omega - \frac{am}{r^{2} + a^{2}}\right)^{2} - 2is\frac{r - M}{r^{2} + a^{2}}\left(\omega - \frac{am}{r^{2} + a^{2}}\right) + \frac{\Delta}{r^{2} + a^{2}}(4ir\omega s - \lambda) + F(r, s)$$

$$r_* = r + \frac{r_+^2 + a^2}{r_+ - r_-} \ln\left(\frac{r - r_+}{r_+}\right) - \frac{r_-^2 + a^2}{r_+ - r_-} \ln\left(\frac{r - r_-}{r_+}\right)$$

Scattering and superradiance

Scattering of scalar waves as before

$$u_{\rm in} \sim \begin{cases} A_{\rm in} e^{-i\omega r_*} + A_{\rm out} e^{i\omega r_*} & r_* \to \infty \\ e^{-i(\omega - m\Omega_H)r_*} & r_* \to -\infty \end{cases}$$

• Try to derive flux conservation

$$W[u_{\rm in}, u_{\rm in}^*] = u_{\rm in} \frac{du_{\rm in}^*}{dr_*} - u_{\rm in}^* \frac{du_{\rm in}}{dr_*} \implies \left(1 - \frac{m\Omega_H}{\omega}\right) |\mathcal{T}|^2 = 1 - |\mathcal{R}|^2$$

- More flux out than went in if $\omega < m \Omega_H$
- Energy taken from BH: Penrose process for waves

Superradiance (Grav scattering)

QNMs of Kerr

- Photon orbits vary with inclination
- Wave picture: freq and decay split with m
- As spin increases, freq increases, decay rate decreases
- Modes determined by mass and spin

Geometric optics (WKB)

Yang et al (2012)

Geometric optics (WKB)

Kerr QNMs

Berti, Cardoso, Starinets (2009) 16

Schwarzschild QNMs

Leaver (1985)

Splitting of spectrum

Yang, AZ et al. (2013) 18

Quasinormal mode response

• Have source-free solutions

$$\psi_{lm\omega} \sim e^{-i\omega t + im\phi} R_{lm\omega}(r) S_{lm\omega}(\theta)$$

$$R_{lm\omega} = \Delta^{-s/2} (r^2 + a^2)^{-1/2} u_{lm\omega}$$

• Build response func in time domain

$$G(x^{\mu}, x^{\mu'}) = \frac{1}{2\pi} \sum_{l,m} \int d\omega \, e^{-i\omega(t-t')} g_{lm\omega}(r, r') \Omega(\theta, \theta', \phi, \phi')$$
$$g(r, r') = \Delta'^{s} \frac{R_{lm\omega}^{\text{in}}(r') R_{lm\omega}^{\text{up}}(r)}{2i\omega A_{\text{in}}}$$

Quasinormal mode response

• Time domain response from inverse Laplace transform

Late-time tail radiation

- Branch cut associated with power-law decay
- Seen at very late times
- Physically, due to backscatter off longrange potential

$$G_{\rm BC} \propto \frac{(r_*r'_*)^{l+1}}{(t-t')^{2l+3}}$$

a = 0.9

Harms, Bernuzzi, Brugmann (2012) $\log_{10} \mathcal{R}\{\psi\}$

Part 2

RINGDOWN AND BINARY BLACK HOLES

GWs from compact binaries

• Entire inspiral-merger-ringdown modeled and calibrated to simulations

GWs from compact binaries

Ringdown of GW150914?

The ringdown of GW150914

- Freq and decay of lowest overtone for $\ell = 2, m = 2$
- Consistent with GR $f \propto 30 \left(\frac{M_{\odot}}{M}\right) \text{kHz}$

Consistency tests of GR

- GW150914: Only 1 mode measured
- Consistency test still possible: split signal
- Compare inspiral with merger-ringdown
- Both consistent with IMR analysis

Consistency tests of GR

- Consistency tests can be stacked over many observations
- Ghosh et al. (2016): after ~100 observations at SNR 25, percent level test are achievable

Ghosh et al arXiv:1602.02453

Testing GR with ringdown

- The (2,2) mode dominates
- Large SNR is needed to detect additional modes (~100)

$$\rho_{
m RD} \propto rac{M_z^{3/2}}{S_n}$$

- Hard for ground-based detectors
- Easier for more massive binaries

Berti et al. arXiv:1605.09286 31

Next Generation Detectors

Space-based detectors

- LISA to fly 2034
- Pathfinder a great
 success
- Space-based missions open many frontiers: SMBH binaries, WD binaries
- Precision tests of GR with EMRIs

Spectroscopy from space

- Space-based BBH detections have huge SNR, $\gtrsim 10^6$
- Ringdown loud enough to measure second mode well
- Many mergers at high redshift
- EMRIs: ringdown at high spin possible

Berti et al. arXiv:1605.09286

Summary

- QNMs outcome of wave eqns on BH spacetimes
- Explored using scalar wave eqs
- QNMs are decaying resonances, for BHs correspondence with null orbits
- QNM spectrum determined by mass and spin
- Rapidly rotating BHs have collective modes (didn't get to these slides!)