Quasinormal modes 2: Spinning black holes

Aaron Zimmerman
XII Mexican School on Gravitation and Mathematical Physics

November 6, 2018

Last time

- Scalar wave equation: $\square_{g} \Phi=-4 \pi T$
- Separation of variables:

$$
\Phi_{\omega l m} \sim e^{-i \omega t} \frac{u_{\omega l m}(r)}{r} Y_{l m}(\theta, \phi)
$$

- Radial equation:

$$
\begin{gathered}
\frac{d^{2} u_{\omega l m}}{d r_{*}^{2}}+\left(\omega^{2}-V\right) u_{\omega l m}=0 \\
V=\left(1-\frac{2 M}{r}\right)\left(\frac{l(l+1)}{r^{2}}+\frac{2 M}{r^{3}}\right)
\end{gathered}
$$

Last time

- For orbiting source with a few freq

$$
\frac{d^{2} u_{\omega l m}}{d r_{*}^{2}}+\left(\omega^{2}-V\right) u_{\omega l m}=S_{\omega l m}(r)
$$

- Decompose source
- GF via series sln or direct integration
- Integrate GF over source moments
- Assemble
- Or, solve 1+1 D wave eqn with source

Last time

- Outgoing BCs only for special freq
- Leaver's method gives

$$
\omega_{l m n} \quad u_{l m n}(r) \quad A_{\text {out }}
$$

- Similar series expansions get $\partial_{\omega} A_{\text {in }}$
- This gives GF, use source evaluated at QNMs to get amplitudes and phases modes
- Grav waves treated the same: ${ }_{s} \psi_{\omega l m} \rightarrow h_{\mu \nu}$

Part 1
ROTATING BLACK HOLES

Rotating black holes: Kerr

- Parametrized by mass and spin parameter M, a
- Horizon at $r_{+}=M\left(1+\sqrt{1-a^{2} / M^{2}}\right)$
- Frame dragging: $g_{t \phi} \neq 0$
- Ergoregion

$$
r^{2}-2 M r+a^{2} \cos ^{2} \theta<0
$$

- Horizon rotates at $\Omega_{H} \propto a$

Rotating black holes: Kerr

- Parametrized by mass and spin parameter M, a
- Horizon at $r_{+}=M\left(1+\sqrt{1-a^{2} / M^{2}}\right)$
- Frame dragging: $g_{t \phi} \neq 0$
- Ergoregion

$$
r^{2}-2 M r+a^{2} \cos ^{2} \theta<0
$$

- Horizon rotates at $\Omega_{H} \propto a$

$$
\begin{aligned}
g_{\mu \nu} d x^{\mu} d x^{\nu}=- & \left(1-\frac{2 M r}{r^{2}+a^{2} \cos ^{2} \theta}\right) d t^{2}+\frac{r^{2}+a^{2} \cos ^{2} \theta}{\Delta} d r^{2}+\left(r^{2}+a^{2} \cos ^{2} \theta\right) d \theta^{2} \\
& -\frac{4 M a r \sin ^{2} \theta}{r^{2}+a^{2} \cos ^{2} \theta} d t d \phi+\frac{\sin ^{2} \theta\left(\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta\right.}{r^{2}+a^{2} \cos ^{2} \theta} d \phi^{2}
\end{aligned}
$$

Rotating black holes: Kerr

- Parametrized by mass and spin parameter M, a
- Horizon at $r_{+}=M\left(1+\sqrt{1-a^{2} / M^{2}}\right)$
- Frame dragging: $g_{t \phi} \neq 0$
- Ergoregion

$$
r^{2}-2 M r+a^{2} \cos ^{2} \theta<0
$$

- Horizon rotates at $\Omega_{H} \propto a$

$$
\Delta=r^{2}-2 M r+a^{2}=\left(r-r_{+}\right)\left(r-r_{-}\right)
$$

Weyl curvature scalar

- For Kerr spacetime, curvature quantities most natural

$$
\Psi_{4}=C_{\mu \nu \rho \sigma} n^{\mu} m^{\nu *} n^{\rho} m^{\sigma *}
$$

- Example: flat space perts $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$

$$
\begin{gathered}
l^{\mu}=\frac{\left(\partial_{t}\right)^{\mu}+\left(\partial_{r}\right)^{\mu}}{\sqrt{2}} \quad n^{\mu}=\frac{\left(\partial_{t}\right)^{\mu}-\left(\partial_{r}\right)^{\mu}}{\sqrt{2}} \\
m^{\mu}=\frac{\left(\partial_{\theta}\right)^{\mu}+i \csc \theta\left(\partial_{\phi}\right)^{\mu}}{\sqrt{2} r}
\end{gathered}
$$

Weyl curvature scalar

- For Kerr spacetime, curvature quantities most natural

$$
\Psi_{4}=C_{\mu \nu \rho \sigma} n^{\mu} m^{\nu *} n^{\rho} m^{\sigma *}
$$

- Example: flat space perts $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$

$$
\begin{gathered}
l^{\mu}=\frac{\left(\partial_{t}\right)^{\mu}+\left(\partial_{r}\right)^{\mu}}{\sqrt{2}} \quad n^{\mu}=\frac{\left(\partial_{t}\right)^{\mu}-\left(\partial_{r}\right)^{\mu}}{\sqrt{2}} \\
m^{\mu}=\frac{\left(\partial_{\theta}\right)^{\mu}+i \csc \theta\left(\partial_{\phi}\right)^{\mu}}{\sqrt{2} r} \\
\Psi_{4}=-\ddot{h}_{+}+i \ddot{h}_{\times}
\end{gathered}
$$

Perturbations of Kerr

$$
\begin{gathered}
\Phi \\
A_{\mu} \xrightarrow[\substack{\text { Project onto } \\
h_{\mu \nu} \\
l_{0} \\
l^{\mu}, n^{\mu}, m^{\mu}, m^{* \mu}}]{\longrightarrow} \Phi_{0}, \Phi_{4} \xrightarrow[\substack{\text { Master } \\
\text { equation }}]{\longrightarrow} L_{T}\left[{ }_{s} \psi\right]=0 \\
{ }_{s} \psi_{l m \omega}=e^{-i \omega t+i m \phi}{ }_{s} R_{l m \omega}(r)_{s} S_{l m \omega}(\theta) \\
s=-2:{ }_{s} \psi=\Psi_{4} \rightarrow h_{\mu \nu}
\end{gathered}
$$

Black hole perturbation theory

- Angular equation

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d S_{l m \omega}}{d \theta}\right)+V_{\theta}\left(\omega, A_{l m}\right) S_{l m \omega}=0
$$

- Potential is more complicated than Schw

$$
V_{\theta}={ }_{s} E_{l m \omega}-\frac{m^{2}}{\sin ^{2} \theta}-s^{2} \cot ^{2} \theta-s^{2}+a^{2} \omega^{2} \cos ^{2} \theta-2 a \omega s \cos \theta
$$

- Solutions are deformations of (spin-weighted) spherical harmonics

Black hole perturbation theory

- Radial equation for $u_{l m \omega}=\Delta^{s / 2} \sqrt{r^{2}+a^{2}} R_{l m \omega}$

$$
\begin{gathered}
\frac{d^{2} u_{l m \omega}}{d r_{*}^{2}}+V_{r} u_{l m \omega}=S_{l m \omega}(r) \\
V_{r}=\left(\omega-\frac{a m}{r^{2}+a^{2}}\right)^{2}-2 i s \frac{r-M}{r^{2}+a^{2}}\left(\omega-\frac{a m}{r^{2}+a^{2}}\right) \\
+\frac{\Delta}{\left.r^{2}+a^{2}\right)^{2}}(4 i r \omega s-\lambda)+F(r, s) \\
{ }_{s} \lambda_{l m \omega}={ }_{s} E_{l m \omega}-s(s+1)+a^{2} \omega^{2}-2 a m \omega
\end{gathered}
$$

Black hole perturbation theory

- Radial equation for $u_{l m \omega}=\Delta^{s / 2} \sqrt{r^{2}+a^{2}} R_{l m \omega}$

$$
\begin{gathered}
\frac{d^{2} u_{l m \omega}}{d r_{*}^{2}}+V_{r} u_{l m \omega}=S_{l m \omega}(r) \\
V_{r}= \\
\left(\omega-\frac{a m}{r^{2}+a^{2}}\right)^{2}-2 i s \frac{r-M}{r^{2}+a^{2}}\left(\omega-\frac{a m}{r^{2}+a^{2}}\right) \\
+\frac{\Delta}{\left.r^{2}+a^{2}\right)^{2}}(4 i r \omega s-\lambda)+F(r, s) \\
r_{*}=r+\frac{r_{+}^{2}+a^{2}}{r_{+}-r_{-}} \ln \left(\frac{r-r_{+}}{r_{+}}\right)-\frac{r_{-}^{2}+a^{2}}{r_{+}-r_{-}} \ln \left(\frac{r-r_{-}}{r_{+}}\right)
\end{gathered}
$$

Scattering and superradiance

- Scattering of scalar waves as before

$$
u_{\mathrm{in}} \sim\left\{\begin{array}{cc}
A_{\mathrm{in}} e^{-i \omega r_{*}}+A_{\text {out }} e^{i \omega r_{*}} & r_{*} \rightarrow \infty \\
e^{-i\left(\omega-m \Omega_{H}\right) r_{*}} & r_{*} \rightarrow-\infty
\end{array}\right.
$$

- Try to derive flux conservation

$$
W\left[u_{\mathrm{in}}, u_{\mathrm{in}}^{*}\right]=u_{\mathrm{in}} \frac{d u_{\mathrm{in}}^{*}}{d r_{*}}-u_{\mathrm{in}}^{*} \frac{d u_{\mathrm{in}}}{d r_{*}} \Rightarrow\left(1-\frac{m \Omega_{H}}{\omega}\right)|\mathcal{T}|^{2}=1-|\mathcal{R}|^{2}
$$

- More flux out than went in if $\omega<m \Omega_{H}$
- Energy taken from BH: Penrose process for waves

Superradiance (Grav scattering)

QNMs of Kerr

- Photon orbits vary with inclination
- Wave picture: freq and decay split with m
- As spin increases, freq increases, decay rate decreases
- Modes determined by mass and spin

Geometric optics (WKB)

Ω_{H}

Yang et al (2012)

Geometric optics (WKB)

Ω_{H}

$$
\begin{aligned}
\mu & \sim \cos \iota \\
\iota & \sim 42^{\circ}
\end{aligned}
$$

Kerr QNMs

$$
\left(\omega_{R}, \gamma\right) \rightarrow(M, a / M)
$$

Berti,Cardoso, Starinets (2009) ${ }^{16}$

Schwarzschild QNMs

Splitting of spectrum

Yang, AZ et al. (2013)

Quasinormal mode response

- Have source-free solutions

$$
\begin{aligned}
& \psi_{l m \omega} \sim e^{-i \omega t+i m \phi} R_{l m \omega}(r) S_{l m \omega}(\theta) \\
& R_{l m \omega}=\Delta^{-s / 2}\left(r^{2}+a^{2}\right)^{-1 / 2} u_{l m \omega}
\end{aligned}
$$

- Build response func in time domain

$$
\begin{gathered}
G\left(x^{\mu}, x^{\mu \prime}\right)=\frac{1}{2 \pi} \sum_{l, m} \int d \omega e^{-i \omega\left(t-t^{\prime}\right)} g_{l m \omega}\left(r, r^{\prime}\right) \Omega\left(\theta, \theta^{\prime}, \phi, \phi^{\prime}\right) \\
g\left(r, r^{\prime}\right)=\Delta^{\prime s} \frac{R_{l m \omega}^{\mathrm{in}}\left(r^{\prime}\right) R_{l m \omega}^{\mathrm{up}}(r)}{2 i \omega A_{\mathrm{in}}}
\end{gathered}
$$

Quasinormal mode response

- Time domain response from inverse Laplace transform

$$
G\left(x^{\mu}, x^{\mu \prime}\right) \sim \sum_{l, m} \int d \omega e^{-i \omega\left(t-t^{\prime}\right)} \Delta^{\prime s} \frac{R_{l m \omega}^{\mathrm{in}}\left(r^{\prime}\right) R_{l m \omega}^{\mathrm{up}}(r)}{2 i \omega A_{\mathrm{in}}}
$$

Ringdown and QNMs

Zhang, Berti, Cardoso (2013)

Late-time tail radiation

- Branch cut associated with power-law decay
- Seen at very late times
- Physically, due to backscatter off longrange potential

$G_{\mathrm{BC}} \propto \frac{\left(r_{*} r_{*}^{\prime}\right)^{l+1}}{\left(t-t^{\prime}\right)^{2 l+3}}$
Harms, Bernuzzi, Brugmann (2012)

Part 2

RINGDOWN AND BINARY BLACK HOLES

GWs from compact binaries

- Entire inspiral-merger-ringdown modeled and calibrated to simulations

GWs from compact binaries

First detection

First detection

First detection

First detection

Ringdown of GW150914?

The ringdown of GW150914

- Freq and decay of lowest overtone for $\ell=2, m=2$
- Consistent with GR $f \propto 30\left(\frac{M_{\odot}}{M}\right) \mathrm{kHz}$

Consistency tests of GR

- GW150914: Only 1 mode measured
- Consistency test still possible: split signal
- Compare inspiral with merger-ringdown
- Both consistent with IMR analysis

Consistency tests of GR

- Consistency tests can be stacked over many observations
- Ghosh et al. (2016): after ~ 100 observations at SNR 25, percent level test are achievable

Ghosh et al arXiv:1602.02453

Testing GR with ringdown

- The $(2,2)$ mode dominates
- Large SNR is needed to detect additional modes (~100)

$$
\rho_{\mathrm{RD}} \propto \frac{M_{z}^{3 / 2}}{S_{n}}
$$

- Hard for ground-based detectors
- Easier for more massive binaries

Berti et al. arXiv:1605.09286

Next Generation Detectors

Space-based detectors

Armano et al. (2016)

- LISA to fly 2034
- Pathfinder a great success
- Space-based missions open many frontiers: SMBH binaries, WD binaries
- Precision tests of GR with EMRIs

Spectroscopy from space

- Space-based BBH detections have huge SNR, $\gtrsim 10^{6}$
- Ringdown loud enough to measure second mode well
- Many mergers at high redshift
- EMRIs: ringdown at high spin possible

Berti et al. arXiv:1605.09286

Summary

- QNMs outcome of wave eqns on BH spacetimes
- Explored using scalar wave eqs
- QNMs are decaying resonances, for BHs correspondence with null orbits
- QNM spectrum determined by mass and spin
- Rapidly rotating BHs have collective modes (didn't get to these slides!)

