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• Scalar wave equation: 
• Separation of variables:
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• Radial equation:
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Last time

• For orbiting source with a few freq 

• Decompose source 
• GF via series sln or direct integration 
• Integrate GF over source moments 
• Assemble 

• Or, solve 1+1 D wave eqn with source
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d2u!lm

dr2⇤
+ (!2 � V )u!lm = S!lm(r)
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Last time

• Outgoing BCs only for special freq 
• Leaver’s method gives

• Grav waves treated the same: s !lm ! hµ⌫

• This gives GF, use source evaluated at QNMs to get 
amplitudes and phases modes

Aout!lmn

@!Ain

ulmn(r)

• Similar series expansions get



ROTATING BLACK HOLES
Part 1
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Rotating black holes: Kerr
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• Parametrized by mass and 
spin parameter  

• Horizon at  
• Frame dragging:  
• Ergoregion 

• Horizon rotates at ⌦H

S = Ma

M, a
r+ = M(1 +

p
1� a2/M2)

gt� 6= 0

r2 � 2Mr + a2 cos2 ✓ < 0

⌦H / a



Rotating black holes: Kerr

 6

• Parametrized by mass and 
spin parameter  

• Horizon at  
• Frame dragging:  
• Ergoregion 

• Horizon rotates at ⌦H

S = Ma

M, a
r+ = M(1 +

p
1� a2/M2)

gt� 6= 0

r2 � 2Mr + a2 cos2 ✓ < 0

gµ⌫dx
µdx⌫ = �

✓
1� 2Mr

r2 + a2 cos2 ✓

◆
dt2 +

r2 + a2 cos2 ✓

�
dr2 + (r2 + a2 cos2 ✓)d✓2

� 4Mar sin2 ✓

r2 + a2 cos2 ✓
dtd�+

sin2 ✓((r2 + a2)2 � a2� sin2 ✓

r2 + a2 cos2 ✓
d�2

⌦H / a



Rotating black holes: Kerr
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• Parametrized by mass and 
spin parameter  

• Horizon at  
• Frame dragging:  
• Ergoregion 

• Horizon rotates at ⌦H

S = Ma

M, a
r+ = M(1 +

p
1� a2/M2)

gt� 6= 0

r2 � 2Mr + a2 cos2 ✓ < 0

⌦H / a

� = r2 � 2Mr + a2 = (r � r+)(r � r�)



Weyl curvature scalar
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• For Kerr spacetime, curvature quantities most 
natural 

• Example: flat space perts

mµ =
(@✓)µ + i csc ✓(@�)µp

2r

lµ =
(@t)µ + (@r)µp

2
nµ =

(@t)µ � (@r)µp
2

gµ⌫ = ⌘µ⌫ + hµ⌫

 4 = Cµ⌫⇢�n
µm⌫⇤n⇢m�⇤



Weyl curvature scalar
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• For Kerr spacetime, curvature quantities most 
natural 

• Example: flat space perts

mµ =
(@✓)µ + i csc ✓(@�)µp

2r

 4 = �ḧ+ + iḧ⇥

lµ =
(@t)µ + (@r)µp

2
nµ =

(@t)µ � (@r)µp
2

gµ⌫ = ⌘µ⌫ + hµ⌫
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Perturbations of Kerr
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s = �2 : s =  4 ! hµ⌫
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Black hole perturbation theory
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• Angular equation

1
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• Potential is more complicated than Schw
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• Solutions are deformations of (spin-weighted) 
spherical harmonics



Black hole perturbation theory
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• Radial equation for ulm! = �s/2
p

r2 + a2Rlm!

d2ulm!

dr2⇤
+ Vr ulm! = Slm!(r)

Vr =

✓
! � am

r2 + a2

◆2

� 2is
r �M

r2 + a2

✓
! � am

r2 + a2

◆

+
�

r2 + a2)2
(4ir!s� �) + F (r, s)

s�lm! = sElm! � s(s+ 1) + a2!2 � 2am!



Black hole perturbation theory
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Scattering and superradiance
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• Scattering of scalar waves as before

• Try to derive flux conservation

)
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• Energy taken from BH: Penrose process for waves
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Superradiance (Grav scattering)
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1974ApJ...193..443T

Teukolsky & Press 
(1974)

Z =
dEout/dt

dEin/dt



QNMs of Kerr
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• Photon orbits vary with 
inclination 

• Wave picture: freq and 
decay split with  

• As spin increases, freq 
increases, decay rate 
decreases 

• Modes determined by 
mass and spin⌦H

S = Ma

m
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Geometric optics (WKB)
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Kerr QNMs
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Quasinormal modes of black holes and black branes 39

of a/M the rotation-induced splitting of the modes is roughly proportional to m, as
physical intuition would suggest.

The weakly damped modes of Kerr black holes In the right panel of Figure 8 we show
the first eight gravitational QNM frequencies with m = 2 (solid lines) and m = −2
(dashed lines). A general feature is that almost all modes with m > 0 cluster at the
critical frequency for superradiance, 2Mω = m, as a/M → 1. This fact was first
observed by Detweiler [262], and a thorough examination of the extremal limit can be
found in Refs. [263, 264, 265]. The mode with n = 6 (marked by an arrow) shows a
peculiar deviation from the general trend, illustrating the fact that some positive-m
modes do not tend to this critical frequency in the extremal limit.
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Figure 9. Frequencies and quality factors for the fundamental modes with
l = 2, 3, 4 and different values of m. Solid lines refer to m = l, .., l (from
top to bottom), the dotted line to m = 0, and dashed lines refer to m = −1, ..,−l
(from top to bottom). Quality factors for the higher overtones are lower than the
ones we display here.

For gravitational wave detection we are mostly interested in the frequency and
quality factor of the dominant modes, which determine whether the mode lies in the
sensitive frequency band of a given detector and the number of observable cycles.
Figure 9 shows these quantities for QNMs with l < 5. Improving on previous results
[9, 266], Ref. [10] presented accurate fits for the first three overtones with l = 2, 3, 4
and all values of m, matching the numerical results to within 5% or better over a range
of a/M ∈ [0, 0.99] (see Tables VIII-X in Ref. [10] and the numerical data available
online [47]). For instance, defining b̂ ≡ 1 − a/M , the frequency ωlm = ωR and quality
factor Qlm ≡ ωR/(2ωI) of the fundamental l = m = 2 and l = 2 , m = 0 modes are

Mω22 ≃ 1.5251− 1.1568 b̂0.1292 , Q22 ≃ 0.700 + 1.4187 b̂0.4990 , (96)

Mω20 ≃ 0.4437− 0.0739 b̂0.3350 , Q20 ≃ 4.000 − 1.9550 b̂0.1420 , (97)

The highly damped modes The intermediate- and large-damping regime of the QNM
spectrum of Kerr BHs is even more puzzling than the RN spectrum. The main
technical difficulty in pushing the calculation to higher damping is that Leaver’s
approach requires the simultaneous solution of the radial and angular continued
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Schwarzschild QNMs
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The quasi-normal mrodes of Kerr black holes 293 
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FIGURE 1. First 60 Schwarzschild quasi-normal frequencies for I = 2 and I = 3. The odd-order 

frequencies are prominently marked; a few-even order frequencies are indicated as short 
bars perpendicular to the curves connecting the points. 

TABLE 1. REPRESENTATIVE SCHWARZSCHILD GRAVITATIONAL QUASI-NORMAL 
FREQUENCIES FOR I = 2 AND I = 3 

(Note the near-coincidence of the ninth I = 2 and the forty-first I = 3 frequencies with the 
'algebraically special' values (l- 1) 1(1 + 1)(l + 2) discussed by Chandrasekhar (I984).) 

1=2 1=3 
n (O)n n 

1 (0.747343, -0.177925) (1.198887, -0.185406) 
2 (0.693422, -0.547830) (1.165288, -0.562596) 
3 (0.602107, -0.956554) (1.103370, -0.958186) 
4 (0.503010, -1.410296) (1.023924, -1.380674) 
5 (0.415029, -1.893690) (0.940348, -1.831299) 
6 (0.338599, -2.391216) (0.862773, -2.304303) 
7 (0.266505, -2.895822) (0.795319, -2.791824) 
8 (0.185617, -3.407676) (0.737985, -3.287689) 
9 (0.000000, -3.998000) (0.689237, -3.788066) 

10 (0.126527, -4.605289) (0.647366, -4.290798) 
11 (0.153107, -5.121653) (0.610922, -4.794709) 
12 (0.165196, -5.630885) (0.578768, -5.299159) 
20 (0.175608, -9.660879) (0.404157, -9.333121) 
30 (0.165814, -14.677118) (0.257431, -14.363580) 
40 (0.156368, -19.684873) (0.075298, -19.415545) 
41 (0.154912, -20.188298) (-0.000259, -20.015653) 
42 (0.156392, -20.685530) (0.017662, -20.566075) 
50 (0.151216, -24.693716) (0.134153, -24.119329) 
60 (0.148484, -29.696417) (0.163614, -29.135345) 

This content downloaded  on Thu, 7 Feb 2013 13:37:25 PM
All use subject to JSTOR Terms and Conditions

Leaver (1985)

�



Splitting of spectrum

 18

Eq. (3.27). The top-left panel of Fig. 7 illustrates for
a¼ 0:998 the 11 DMs with !R ! 0, as well as a 12th
mode on the imaginary axis which does not decrease in
decay as the angular momentum is increased. Some of the
negative-frequency modes are also visible. The ZDMs can
be seen as small, dense clusters of contours. The bottom-
left panel of Fig. 7 zooms in on the first three ZDMs,
showing that they are accompanied by poles and are well
described by the analytic approximation. Since the angular
momentum at which the first ZDM has a decay rate less
than the 11th DM must be quite low (a& 0:16 by our
NEK expressions, which are not valid for such small values
of a), we can only estimate at what angular momentum the
spectrum bifurcates.

The case m ¼ 1 is close to the phase boundary and
provides a clean example of the bifurcation of the spec-
trum. The top, middle panel of Fig. 7 shows the first six
QNMs for a¼ 0:99. They have monotonically increasing
decay and can be labeled with a single overtone index. As
the angular momentum increases to a¼ 0:998, the spec-
trum bifurcates, as seen in the bottom, middle panel of
Fig. 7. There are two DMs in this case, and as the spectrum
divides the overtone n QNMs become the n0 ¼ n" 2
ZDMs for n > 2. Though this bifurcation behavior occurs
for the NEK, the angular momentum at which the branches
separate in the (2, 1) case is actually not beyond the scope
of what may be achieved by astrophysical black holes [1].

In order to further illustrate the behavior of the bifurca-
tion for the (2, 1) mode, in Fig. 8 we plot the first six
overtones (at low angular momentum) as we increase the
angular momentum from a¼ 0:9 towards the extremal
value, ending at a¼ 0:9999. The two DMs change rela-
tively little, while the decay rates of the first four ZDMs
begin to rapidly decay after these modes cross the vertical

line !R ¼ m=2. In fact, all four modes pass through
nearly the same frequency value (although at different
angular momenta), ! ¼ m=2" 0:325i. The nature of
this ‘‘focusing’’ frequency is not clear, but it appears to
mark the onset of the NEK regime for each mode. The
results of Fig. 8 match those found by Leaver, in Fig. 3 of
[17] (although note Leaver’s convention M ¼ 1=2).
Finally, m ¼ 2 features only ZDMs and no DMs. We

show in the top-right and bottom-right panels of Fig. 7 the
first few QNMs for two values of the angular momentum.
As we increase the angular momentum from a¼ 0:99 to
a¼ 0:998 we see that the ZDMs change, as expected from
Eq. (3.27), approaching their final values at ! ¼ m=2. The
NEK prediction becomes more accurate with increasing
spin. We note that there are several poles evident in the
right panels of Fig. 7, which are distinguished by their
lighter shading and again emphasize that these have no
physical relevance.
We present a discussion of the scalar l ¼ 2, m ¼ 1

QNMs in Appendix D. These modes behave similarly to
the gravitational modes but exhibit some curious behavior,
which may serve as the subject of future study.

2. The l¼ 10 modes

Contours showing the spectrum bifurcation in the case
l ¼ 10 are presented in [16]. Here we briefly supplement
those results by plotting the trajectories of the QNM fre-
quencies as the angular momentum of the black hole
increases for m ¼ 7. Figure 9 plots the trajectories of the
first seven overtones as the hole’s angular momentum
increases, in the same manner as Fig. 8. Comparing to
the frequency trajectories for the gravitational (2, 1)
mode, we see the same general behavior for the QNM
overtones: initially, for angular momentum a¼ 0:99, the
modes have monotonically increasing decay rates. As the
angular momentum increases, the frequency of the first
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FIG. 8 (color online). Plots of QNM frequencies ! for the case
s ¼ "2, ðl; mÞ ¼ ð2; 1Þ values as found using Leaver’s method
(with inversion). The first six overtones (at low angular
momenta) are shown, which become two DMs and the first
four ZDMs as we increase a from 0.9 to 0.99999, using loga-
rithmically decreasing spacing. The decay rate !I of the two
DMs changes relatively little as a! 1, while the ZDMs move
towards their extremal limit ! ! m=2.
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FIG. 9 (color online). Plots of QNM frequencies! for the case
s ¼ 0, ðl; mÞ ¼ ð10; 7Þ values as found using Leaver’s method
(with inversion). The first seven overtones (at low angular
momenta) are shown, which become three DMs and the first
four ZDMs as we increase a from 0.99 to 0.99999, using
logarithmically decreasing spacing.

HUAN YANG et al. PHYSICAL REVIEW D 88, 044047 (2013)

044047-14

Yang, AZ et al. (2013)
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Quasinormal mode response

• Have source-free solutions
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• Build response func in time domain
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Quasinormal mode response
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• Time domain response from inverse Laplace transform

G(xµ, xµ0) ⇠
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Ringdown and QNMs

 21Zhang, Berti, Cardoso (2013)
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FIG. 3. Sasaki-Nakamura wave function for an ultrarelativistic infall along the symmetry axis of a Kerr BH. Solid black
lines are results from the numerical solution of the perturbation equations; the other lines are results obtained by summing
different numbers of overtones. The upper panels refer to l = 2, the lower panels to l = 3. The left panels corresponds to
the Schwarzschild limit (j = 0), and the right panels to a fast-spinning Kerr BH with a = 0.49 (j = 0.98). In this plot, as
everywhere else in the paper, we use units 2M = 1.

Ψ must be understood as the Sasaki-Nakamura wave
function – against numerical gravitational waveforms ob-
tained in this way. As in the Schwarzschild case, the
integrand appearing in the calculation of the Kerr ex-
citation factors is, in general, divergent. The divergence
can be regularized following a procedure analogous to the
Schwarzschild case (cf. Appendix A2).

Figure 3 confirms our basic findings from the nonrotat-
ing case: the convergence of the QNM expansion is not
necessarily monotonic, and the excitation coefficient ex-
pansion works better for higher values of l. Notice that a
relatively small number of overtones is sufficient to repro-
duce the numerical waveform at early times even when
the spin of the Kerr BH is rather large (j = 0.98), so
that one may in principle expect that a larger number of
overtones would be necessary (see e.g. [29, 54–57]). To
our knowledge, the calculation presented in this Section
is the first concrete proof that an excitation-coefficient
expansion is applicable and useful in the Kerr case: all
calculations available in the literature so far were specific
to the Schwarzschild case (see e.g. [32, 33]).

V. CONCLUSIONS AND OUTLOOK

In this paper we have implemented a new method,
based on the MST formalism, to compute the excita-
tion factors Bq for Kerr QNMs. This method is simpler
and more accurate than the method used by two of us
in [2], allowing us to extend the calculation to higher
angular multipoles l and to higher overtone numbers n.
Tables of the excitation factors Bq in the Teukolsky and
Sasaki-Nakamura formalisms will be made publicly avail-
able online [39], in the hope to stimulate further research
in this field.

As a test of the method, we have computed the QNM
excitation coefficients for the classic problem of particles
falling radially into the BH. We have compared the exci-
tation coefficient expansion against numerical results for:
(i) particles falling from rest (E = 1) into a Schwarzschild
BH, (ii) large-energy particles (E = 10) falling into
a Schwarzschild BH, and (iii) ultrarelativistic particles
falling into a Kerr BH along the symmetry axis. In all
cases we found excellent agreement, validating the useful-



Late-time tail radiation
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Numerical solution of the 2+1 Teukolsky equation, application to late-time decays 29
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Figure 17. Late time decay of s = �2 non-axisymmetric perturbations for highly
spinning backgrounds. The plots show the field variable <{ } extracted at R = R+

and R = 1 and at ✓ = ⇡/2 for a 2 {0.9, 0.9999} and ✓ = 1.1345 for a = 1. Initial
data are ID1 and l0 = m = 2. From left to right the field decays with a power law
tail (a = 0.9), or with an oscillatory behaviour damped by either a slow exponential
(a = 0.9999) or a power law 1/T (a = 1).

is not observed up to T ⇠ 8000 but may eventually arise at later times. This behaviour

is consistent with the findings of [63, 29], and can be qualitatively understood in terms

of modes trapped in the superradiance resonant cavity.

For a ! 1 the amplitude of the oscillating field grows by a few orders of magnitude

near R+ at the beginning of the simulation (especially for s = �2). This leads to a

step-like function which corrupts convergence if the number of radial grid points nr is

too small (see analogous discussion in Sec. 3). Accurate simulations require PS radial

derivatives and nr ⇠ 281 points for non-extreme cases. For the extreme case we set

nr = 561 for s = 0 and nr = 701 for s = �2. On the other hand the large amplitudes

and small damping times allow for the use of long-double instead of quadruple (except

for a = 0.9 and s = �2), which alleviates the computational costs. Due to these facts

we observe spectral convergence during the whole simulation time, as shown in Fig. 16

for s = �2 and a = 0.9999. Both the Fourier coe�cients (left panel) and the Chebyshev

coe�cients (right panel) reach round-o↵ level in approximately straight lines at very late

times T ⇠ 4000. Note that the Fourier coe�cients contain both even- and odd-indexed

frequencies in contrast to the m = 0 simulations shown in Fig. 4.

The simulations’ outcome is illustrated in Fig. 17 for s = �2, l0 = m = 2,

where we report the field extracted at the horizon and I +. On the simulated

timescale, the power law tail (left panel) is observed for values a  0.999. For larger

values (a = 0.9999, central panel) an oscillatory and exponentially damped behaviour

dominates the dynamics both at the horizon and I +. For a = 1 the field remains

oscillatory but does not decay exponentially during the simulated time. At the horizon

the field amplitude is still growing at T = 2500, while at I + the decay departs from

an exponential law. A similar qualitative behaviour is observed in the case s = 0,

l0 = m = 1.

It is instructive to compare the QNM (complex) frequencies ! = (!r,!i) extracted

Harms, Bernuzzi,  
Brugmann (2012)

• Branch cut associated 
with power-law 
decay 

• Seen at very late 
times 

• Physically, due to 
backscatter off long-
range potential

GBC / (r⇤r0⇤)
l+1

(t� t0)2l+3



RINGDOWN AND BINARY BLACK 
HOLES

Part 2
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GWs from compact binaries
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Inspiral RingdownMerger

•Entire inspiral-merger-ringdown modeled and calibrated to 
simulations

h
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GWs from compact binaries
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First detection
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Ringdown of GW150914?

 27LVC (2016)



The ringdown of GW150914

• Freq and decay of lowest overtone for 

• Consistent with GR

 28
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Consistency tests of GR

• GW150914: Only 1 
mode measured 

• Consistency test still 
possible: split signal 

• Compare inspiral with 
merger-ringdown 

• Both consistent with 
IMR analysis

 29

40 50 60 70 80 90 100 110 120

Final mass M f (M�)

0.0

0.2

0.4

0.6

0.8

1.0

Fi
na

ls
pi

n
a f po

st-
ins

pir
al

inspiral

IM
R

�3

�2

�1

0

1

2

3
h G

W
(t)
/1

0�
21

�0.15 �0.10 �0.05 0.00
Time (seconds)

0

100

200

250

f G
W

(t)
(H

z)
�3

�2

�1

0

1

2

3

h G
W

(t)
/1

0�
21

�0.15 �0.10 �0.05 0.00
Time (seconds)

0

100

200

250
f G

W
(t)

(H
z)

LSC, arXiv:1602.03841 



Consistency tests of GR

• Consistency tests can be stacked over many 
observations 

• Ghosh et al. (2016): after ~100 observations at 
SNR 25, percent level test are achievable

 30Ghosh et al arXiv:1602.02453 
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Testing GR with ringdown
• The (2,2) mode 

dominates 
• Large SNR is needed 

to detect additional 
modes (~100) 

• Hard for ground-based 
detectors 

• Easier for more 
massive binaries

 31

O
1

O
2

A
dL

IG
O

A
+

A
+

+

V
rt

V
oy

ag
er

E
T
D
X

E
T
B

C
E
1

C
E
2w

C
E
2n

10�3

10�2

10�1

100

101

102

103

104

105

106

ev
en

ts
/y

ea
r

⇢ > 8 ⇢ > ⇢GLRT

M3

M10

M1

M3

M10

M1

Berti et al. arXiv:1605.09286

⇢RD / M3/2
z

Sn



Next Generation 
Detectors

 32

Einstein Telescope



Space-based detectors

• LISA to fly 2034 
• Pathfinder a great 

success 
• Space-based missions 

open many frontiers: 
SMBH binaries, WD 
binaries  

• Precision tests of GR 
with EMRIs
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exchanging a laser beam over a few million kilometres.
To achieve the full science objectives of LISA, the ASD of
spurious random accelerations of the TMs must be limited
to S1=2g ðfÞ ≤ 3 fm s−2=

ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=8 mHzÞ4

p
within

the frequency band of the detector, 0.1 mHz ≤ f ≤ 1 Hz.
The f2 relaxation for f ≥ 8 mHz arises because at those
frequencies the noise is expected to be dominated by white
interferometer displacement noise that, when converted to
equivalent acceleration, scales like f2. The requirement
should be given in terms of the differential acceleration,
Δg, between the two test masses. However, as the two
spacecraft are separated by a large distance, force fluctua-
tions around each TM are assumed to be incoherent and
S1=2Δg ¼

ffiffiffi
2

p
S1=2g .

At frequencies below 1 Hz, there is currently no realistic
possibility to reach such a level of free fall in a ground
based laboratory. The main problems are the large accel-
eration of the laboratory relative to a local inertial frame
and low-frequency terrestrial gravitational noise. This
pushes low-frequency GW detectors to space but also
prevents an end-to-end experimental demonstration of
the required free-fall performance in a terrestrial laboratory,
leading to the need for the LISA Pathfinder mission, whose
requirements for the ASD of Δg have been set atS1=2Δg ðfÞ ≤

30 fm s−2=
ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=3 mHzÞ4

p
within the fre-

quency band 1 mHz ≤ f ≤ 30 Hz. Note that for LPF the
cross-over frequency to the f2 branch (3 mHz), corresponds
to the value used in the earliest LISA concept [4], while the
change to 8 mHz results from the latest studies [2]. This
difference has no practical impact on thework presented here.

A. The instrument

The core instrument of LPF [5], consists of two quasi-
cubic test masses, of size ð46.000% 0.005Þ mm and mass
M ¼ ð1.928% 0.001Þ kg, formed from a high-purity gold-
platinum alloy. During science operations, these masses are
in free fall inside a single spacecraft with their centers
separated by a nominal distance of ð376.00% 0.05Þ mm
along a line that we take as the x axis (see Fig. 2 and
Ref. [6]). Each TM is contained within an electrode housing
[7], which serves as an electrostatic shield in addition to a
6 degree-of-freedom sensor and electrostatic force actuator,
with gaps around the mechanically and electrically isolated
TM of 2.9–4 mm on the different axes. Charge accumulated
by the TMs due to cosmic rays is removed by a UV light
discharge system [8].
DC and slowly varying electrostatic forces are applied

with dedicated audio frequency voltages between 60 and

FIG. 1. Gray: ASD of Δg, S1=2Δg ðfÞ, measured for 6.5 days starting 127 days after launch. The ASD is the result of averaging 26
periodograms of 40 000 s each, which results in a relative error (1σ) of 10% inS1=2Δg . The effective spectral resolution, set by the spectral
window, is Δf ≃%50 μHz. The absolute calibration of the measurement is better than 5%. Red: ASD of the same time series after
correction for the centrifugal force (visible at the lowest frequencies). Light blue: ASD after correction for the pickup of spacecraft
motion by the interferometer (IFO), visible in the 20–200 mHz range. Dashed smooth black line: SΔgðfÞ ¼ S0 þSIFOð2πfÞ4 with

S1=20 ¼ ð5.57% 0.04Þ fm s−2=
ffiffiffiffiffiffi
Hz

p
and S1=2IFO ¼ ð34.8% 0.3Þ fm=

ffiffiffiffiffiffi
Hz

p
. Note that the level of S0 has decreased further in subsequent

measurements, as quoted in the abstract and shown in Fig. 3. Shaded areas: LISA and LISA Pathfinder requirements for Δg. The LISA
single test-mass acceleration requirement [2] has been multiplied by

ffiffiffi
2

p
to be presented here as a differential acceleration.

PRL 116, 231101 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
10 JUNE 2016

231101-3

Armano et al. (2016)



Spectroscopy from space

• Space-based BBH 
detections have huge 
SNR, 

• Ringdown loud enough 
to measure second 
mode well 

• Many mergers at high 
redshift 

• EMRIs: ringdown at 
high spin possible
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Summary

• QNMs outcome of wave eqns on BH 
spacetimes 

• Explored using scalar wave eqs 
• QNMs are decaying resonances, for BHs 

correspondence with null orbits 
• QNM spectrum determined by mass and 

spin 
• Rapidly rotating BHs have collective 

modes (didn’t get to these slides!)
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