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Abstract. To consider GRBs as standard candles, the circularity problem should be surmounted. To
do this GRBs are calibrated at low redshifts using SNIa data and then extrapolating the calibration
to higher redshifts. In this work we apply GRBs calibration to estimate the Hubble parameter,
H(z), from the luminosity distance extracted from the calibration and, knowing H(z), we study
the parameter w(z) of the equation of state of dark energy.
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INTRODUCTION

In 1998 astronomical observations provided evidence of a repulsive side of gravity. Mea-
surements of the brightness of Type Ia Supernovae (SNIa) pointed to an accelerated ex-
pansion of our universe. This expansion has been attributed to an energy component
(dark energy) with negative pressure which dominates the universe at late times and
causes the observed accelerated expansion. Therefore one of the most important objec-
tive in cosmology is to understand the nature of dark energy.

SNIa, that are standard candles, have been considered to be a powerful probe to
study this mysterious phenomenon, however, SNIa are plagued with extinction from
the interstellar medium, and hence the current maximum redshift of SNIa is only about
z ' 1.755. On the other hand, the redshift of the last scattering surface of cosmic
microwave background (CMB) is about z' 1090 [1]. Therefore, there is a wide breach
between the redshift of SNIa and CMB. So, the observations at intermediate redshift are
important to discard cosmological models.

Recently, Gamma-Ray Bursts (GRBs) have been proposed to be a complementary
probe to SNIa. So far, GRBs are the most violent and bright explosions in the universe.
Their high energy photons in the gamma-ray band are almost immune to dust extinction,
in contrast to supernovae. Up to now, there are many GRBs observed at 0.1 < z ≤ 8.1,
whereas the maximum redshift of GRBs is expected to be 10 or even larger [2]. The
problem is that GRBs appear to be anything but standard candles: they have a very wide
range of isotropic equivalent luminosities and energy outputs. Suggestions have been
made to calibrate them by using correlations between various properties of the prompt
emission, and in some cases also the afterglow emission. Nevertheless, the calibration
of the observed correlations require the assumption of a cosmological model creating
a circularity problem. Moreover, there are scarce low redshift GRBs data. However, if
one assumes that once leaving their source, light rays should propagate in the same
way throughout cosmic spacetime, then we can calibrate GRBs at low redshift using the



known data for SNIa.
In the next section we show briefly how to calculate distances to astrophysical objects

and how to link their luminosity to the speed of expansion of the Universe. Next we show
how to calibrate GRBs using SNIa; we use a 25 sample of GRBs data given in [3] and
a 27 sample of the SNIa data from [4] with 0.359 < z < 1.755. With this calibration we
have two posibilities: 1) to study the behavior of the parameter of the equation of state of
dark energy for a redshift range wider than before, or 2) to determine the cosmological
parameters at higher redshifts, this could be pending for future work.

ASTROPHYSICAL DISTANCES MEASUREMENT

The luminosity distance dL used at observations is defined as

d2
L ≡

Ls

4πF
, (1)

where Ls is the absolute luminosity of the object and F is the observed flux during a time
t. For Friedmann-Lemaître-Robertson-Walker (FLRW) flat spacetime, the luminosity
distance can be written as

dL =
c(1+ z)

H0

∫ z

0

dz̃
E(z̃)

, (2)

where

E(z)≡ H(z)
H0

. (3)

H0 is the present Hubble constant and c is the velocity of light.
From the above equation the Hubble parameter can be expressed in terms of the

luminosity distance as

H(z) =
{

d
dz

(
dL(z)

c(1+ z)

)}−1

. (4)

On the other hand, the luminosity distance can be obtained observationally from µ , the
observed distance module with

µ0 ≡ m−M = 5logdL +25, (5)

where m is the apparent magnitude and M is the absolute magnitude. So, with Eqs. (4)
and (5) we can obtain H(z) from observational data.

Therefore, the main quantity to find is the luminosity distance dL as a function of the
redshift z of distant objects. To extract the real distances a standard rule to compare is
needed. This is a standard candle, objects in the universe with a well calibrated intrinsic
luminosity. Type Ia supernovae are these kind of objects [5] and it has to do with their
origin, as a white dwarf that accreting matter (from a companion star, for instance) gets
to the Chandrasekhar limit mass.

Then, to enlarge the range of redshifts in probing cosmological models using Gamma-
ray-bursts (GRBs), as a first step we must establish under which parameters can GRB
be considered as reliable standard candles or under what conditions can be calibrated to
avoid circularity problems so we can use them in the study of dark energy.
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FIGURE 1. Luminosity distance adjustment for 27 SNIa data from [4]. The best fit is given by
Eq. (6) with R2 = 0.97.

CALIBRATING GAMMA-RAY BURST.

GRBs can be considered as distance indicators if they can be calibrated at low redshifts;
however few data are available at these redshifts. To solve this problem, following [6],
we extrapolate the existing relation dL vs z for SNIa up to z < 1.7 to GRBs.

We use the distance module, µ0, of 27 SNIa reported in Riess et al. (2007) in the range
0.359 <z <1.75 to calculate the luminosity distance using Eq. (5).

Adjusting observational data we found a formula for the luminosity distance in the
redshift range 0.359 < z < 1.755, this is

dL

1027cm
= (16.85±2.76)z+(4.97±2.45)z2. (6)

It is not assumed any cosmological model at this stage, but just that SNIa are standard
candles. The corresponding fit is shown in Fig. (1).

Then, we apply Eq. (6) to 16 GRBs with redshift z < 1.755 to obtain the total
collimation-corrected energy of the GRB, Eγ = 4πd2

LSbolo(1 + z)−1Fbeam, where Sbolo
is the bolometric fluence estimated in 1-10000keV energy range in GRB rest frame and
Fbeam is a beaming factor related with the jet opening angle. On the other hand, it is also
reported the peak energy of the νFν spectrum. The observed peak energy value, Ep,obs,
must be multiplied by 1 + z as a correction to the redshift of the spectrum, so we use
Epeak = (1+ z)Ep,obs.

Ghirlanda et al. [7] discovered a tight correlation between Epeak and Eγ . This is an
improvement on (and combination of) both the Eγ =constant relation of Bloom et al. [8]
and the Epeak−Eγ,iso relation of Amati et al. [9]. The Ghirlanda relation is given by

Eγ

1052erg
= 3.41×10−6

(
Epeak

1keV

)1.63

. (7)

We verify that the Ghirlanda relation is fulfilled by the 16 GRBs with z <1.755 and this
expression is extrapolated to 25 GRBs with higher redshifts, up to z < 5.6.

For each GRB with z = zi we have the observed Sbolo in units of erg cm−2, the
dimensionless Fbeam and the observed Ep,obs in keV. Then, using Eq. (7) and Eγ =
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FIGURE 2. Luminosity distance adjustment for the GRBs’ data from [3], derived using the
Ghirlanda relation; the best fit is given by Eq. (10) with R2 = 0.86.

4πd2
LSbolo(1+ z)−1Fbeam, the observed luminosity distance can be derived as

dL(zi) = 1023cm

√
3.41

4πF i
beamSi

bolo
(E i

p,obs)
0.815(1+ zi)1.315. (8)

With the error propagation (shown in Fig. 2) calculated according to

(∆dL(z))
2 =

(
∂dL(z)
∂Sbolo

σSbolo

)2

+
(

∂dL(z)
∂Fbeam

σFbeam

)2

+
(

∂dL(z)
∂Ep,obs

σEp,obs

)2

, (9)

where σi is the uncertainty related to each data, as reported in [3]. From Eq. (8) and the
data of GRBs in the range 0.359 < z < 5.6, we obtained the luminosity distance given
by (see Fig. 2)

dL

1027cm
= (18.55±5.73)z+(1.56±1.87)z2. (10)

Substituting Eq. (10) into Eq. (4), we obtained H(z) and then we derived the dark-energy
equation of state parameter w(z) from (plotted in Fig. 3)

w(z) =
2
3(1+ z)d lnH

dz −1

1− H2
0

H2 Ω0m(1+ z)3
. (11)

CONCLUSIONS

In the present work, with the help of the sample of 27 SN Ia from Riess et al. (2007) [4],
we calibrated 25 GRBs with the well-known Ghirlanda relation, obtaining a cosmology-
independent calibration. For a sample of 9 GRBs we extended the Ghirlanda relation
to higher redshifts. It can be used to constraint cosmological models or to study the
behaviour of the parameter of the equation of state for dark-energy in terms of the
redshift, w(z), without the circularity problem.

From the empirical luminosity distance, dL(z), Eq. (10) we obtained the correspond-
ing Hubble function and then w(z). We noticed that Eq. (11) for w(z) is not valid for
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FIGURE 3. The plot for w(z), as a function of the redshift Eq. (11) assuming H0 = 49.01km
s−1Mpc−1 as the present value of the Hubble parameter that is obtained from our adjust, Eq.
(10).

all redshifts z, but there is a critical zc where the factor [1− (H0/H(z))2
Ω0m(1 + z)3]

becomes zero, and then w(z) diverges. The value of zc depends on the chosen Ω0m and
H0 and therefore the behavior of w(z) depends strongly on the assumed Ω0m: this is the
influence of dark matter on dark energy [10]. In Fig. 3 it is shown the behaviour of w(z),
for lower values of Ω0m, w(z) is closer to the ΛCDM accepted value w =−1.

Unfortunately there is still two problems with GRBs data: the uncertainties and the
few data samples that do not allow us to obtain definite conclusions. However the
situation is quite likely to change as more and better quality GRB measurements are
expected to become available in the near future.
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