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INTRODUCTION

It was 1915 when A. Einstein presented his new theory of gravitation to the Prusian
Academy of Sciences. At that time nobody suspected the huge legacy and amount of
research directions that, 100 years later, would have arisen from it: from understanding
what the universe is made of, its origin and final destination(cosmology); why, in spite
of being homogeneous and isotropic at large scales (300 Megaparsecs), at smaller scales
it has a structure of galaxies, galaxy clusters, etc.; the nature of highly dense bodies and
the way in which the spacetime is affected when violent astrophysical events, like the
colision of black holes, occur, producing so-called gravitational waves.

The seed for general relativity theory was special relativity theory. And the special
ingredient to formulate special relativity was Albert Einstein’s deep physical insight,
having as his most relevant assumption that, regardless of the reference frame we
formulate the laws of physics in, such laws should describe the same phenomenon in
the exact same way.

RELATIVITY OF SPACETIME

1905 has been called the miraculus year in A. Einstein life due to the enormous contri-
butions that came along that year: he published four works that completely changed the
view of physics in very different branches. He proposed an explanation for the Brow-
nian motion; in his Ph. D thesis, he gave an approximate size for the still unaccepted
molecules. In the paperOn a heuristic point of view concerning the production and
transformation of lighthe proposed that light interacts with matter in a quantized way,
and then in one of the sections he explained how the photoelectric effect works, which
made him win the Nobel Prize in 1921. Besides he also solved an old controversy that
has to do with the distinct coordinate transformations thatwere appropriate to classi-
cal mechanics (Galilean transformations) and to the laws ofelectrodynamics, set as the



Maxwell equations (Lorentz transformations). To carry outhis hypothesis of universal
validity of the Lorentz transformations he gave up the, popular at the time, concept of
aether. This is known as special relativity theory, which he published in the Analen der
Physik entitled asOn the electrodynamics of moving bodies. In another paper the same
yearDoes the inertia of a body depend upon its energy content?he derived the most
famous equation in the world:E = mc2.

Turning back to special relativity, it is based in two empirical facts, or principles as
Einstein called them:

1. The output of an experiment shall obey the same rules, regardless of the place the
experiment takes place in. In other words, all inertial reference frames are equivalent
when it comes to derive the laws of physics. Recall that inertial reference frames are the
ones that move relative to each other with constant velocity(uniform relative motion).

2. Every inertial observer sees light traveling at constantvelocityc= 300000km/seg,
independently of the movement of the source of light and of the reference frame in which
this is measured. Moreover this is the maximum attainable velocity, nothing can travel
faster than light.

Starting from these two principles, if we now try to check consistency with the usual
rule to add velocities, we will find a disagreement with the second principle (that light
has the same constant velocity for every observer) as the following thought experiment
shows:

A train travels with velocityV, and inside, a passenger walks with velocityw. For
someone who watches the scene from outside, standing at the platform, the passenger
inside moves at velocityV +w if walking in the same direction than the train or atV−w
if the passenger is moving in the opposite direction. Now letus suppose that a light beam
is emitted in the platform; the standing observer will measure a beam’s speed of c. Which
would be the result of measuring the beam’s velocity for the passenger in the train?. If
we stick to the usual rule for velocity addition, the passenger (if he is standing still in
the train) shall measurecp = c±V, depending on whether the beam and the train travel
in the same (plus) or in opposite directions (minus). This result contradicts the second
principle of special relativity theory! Because such principle states that both observers,
inside the train and at the platform, must observe a velocityof c for the beam. Therefore,
there is something wrong with our rule for summing up velocities, which doesn’t agree
with experience.

Demanding that every observer measures the same speed of light, regardless of his/her
reference frame, leads to several consequences, for instance, the relativeness of the
concept of simultaneity. Two events that occur simultaneously in a reference frame are
not necessarily simultaneous in another (i.e. one of the events may occur before the other,
provided that causality is not violated). This can be explained by means of the following
gedanken experiment [1]: Go back to the train and think in a sparkle that produces
simultaneously two light beams, one traveling toward the front end of the wagon (point
A) and the other in the opposite direction, toward the rear ofthe wagon (point B, see
Fig. 1). Let us compare the experience of a passenger inside the train and someone else
outside, standing at the platform. According to the passengers in the train, light beams
reach points A (front end of the train) and B (the rear of wagon) simultaneously. But
from the viewpoint of the guy at the platform, the light signal reaches point B in less
time than point A, because point B is getting closer to the beam as the train moves,



FIGURE 1. Events that are simultaneous in some reference frame, may not be so in another.

while point A is receding. Therefore, events that are simultaneous in some reference
frame, may not be so in another.

Other consequences of relativity are effects on the measurement of lenght and time,
which depend on the velocity of the observer [2]; these effects are known aslenght
contractionandtime dilation. Let us consider two inertial reference framesK andK′ in
relative motion at constant velocityv. Let bex be a lenght along theX axis as measured
by the observer inK; let bex′ be the lenght along theX axis as measured by the observer
in K′. The lenghtsx andx′ are not the same, but they are related by means of the Lorentz
transformationx′ = x(1− v2

c2)
1/2. For instance, if the length of a rod, according toK, is

x = 1m, and the relative velocity betweenK andK′ is v = 0.5c, then the observer in
K′ measures a length ofx′ = 86.6cm for the rod. The maximum lenght is measured in
the frame that is at rest. At any other system in movement relative to that frame, the
lenght is reduced by an amount of(1− v2

c2)
1/2. This effect is known as Lorentz’slenght

contraction.
Time dilation is a shocking effect related to time measurements. For the frames in

relative motionK and K′, and for a watch fixed with respect toK′, let us compare
the measured interval times∆t and ∆t ′, respectively. They relate to each other by
∆t ′ = ∆t(1− v2

c2)
1/2. This indicates that the time intervals inK last longer than those of

K′. For instance, if inK′ a time interval of one second elapses, then the very same interval
lasts 1.15 seconds inK if the relative velocity betweenK andK′ is v = 0.5c. Another
way to put it is to say that time goes slower in moving frames. Several paradoxes arise
from this effect, like that of the twins that are separated and one of them travels with
huge velocity, far away from his brother; years later the first gets back and when they
meet again, the traveler looks younger than the guy that stayed at home [3].

These effects are unobserved in our ordinary experience, because to be noticed, huge
velocities (close to that of light) should be involved. By huge we mean HUGE: for
instance, the launching velocity of a rocket is about 8700Km/hr that is,v = 0.029c,



which is rather small (about three hundredths ofc!). Moreover,(v/c)2 = 8.2× 10−4,
which contracts every meter by 4 tenths of a millimeter. However, in high-energy particle
accelerators, velocities comparable to that of light (0.5c, 0.7c) can be reached; and at
those velocities, all of the aforementioned relativistic effects are our bread and butter.
This effects can also be observed in the earth muons, who travel distances greater than
their short mean lifetimes at rest would allow.

Other experiments have been carried out with atomic cesium clocks that travel in
airplanes, and their measurements are compared with those of similar clocks that stay
on earth. Depending on whether the airplane is traveling toward the east or the west, the
results turned out to be clearly different.

Minkowski spacetime and curved spacetime

As we have had the opportunity to appreciate, each referenceframe has its own
time. In order to determine an event on a reference frame, it does not suffice to have
its spatial coordinates, but we still need to know the instant of time the event takes
place in. This is, an event is completely described by three spatial and one temporal
coordinate:(x,y,z,ct). Our reference frame grew one new dimension, namely time. The
space equiped with time is the spacetime; if it isℜ3 plus time, it is calledMinkowski
spacetime.

As we mentioned before, neither lenght nor time intervals are absolute, but they
depend on the reference frame of the observer that measures them. However, there are
quantities which remain constant and do not depend on the reference frame. These
quantities are of extreme importance, since they do not change from one reference
system to another. They are calledinvariants. One of these quantities is the four-
dimensional lenght ordistance of separationbetween two events,

ds2 = (∆x)2 +(∆y)2 +(∆z)2−c2(∆t)2

= (∆x′)2 +(∆y′)2 +(∆z′)2−c2(∆t ′)2 = constant. (1)

where∆x = x2−x1, etc., refer to the intervals whose extremepoints are(x1,y1,z1, t1)
and(x2,y2,z2, t2) in the primeless system, and the analogous for the primed quantities.
Notice that there can be null (light beam trajectories), as well as negative, lengths. Thus,
this determines a metric that is not positive definite.

Einstein’s first thoughts to marry gravitation and spacetime

Newton’s law of gravity had reigned for about two centuries:it explained the orbits
of planets around the Sun, orbits of satellites around planets, ocean tides and the falling
down of objects on Earth. Even when Uranus seemed to violate the gravity law (1781),
it was discovered shortly afterward that the anomaly in its orbit was produced by the
influence of a so far unseen planet: Neptun (1846). In short, Newton’s law of gravity
was capable of explaining all the known evidence relating togravity. However, at the



beginning of the twentieth century, the orbit of Mercury wasdiscovered not to be as
accurate as Kepler’s law commands: Its perihelium showed a shifting resulting in a
non-closed orbit (i.e., after one whole turn around the Sun,Mercury does not return to
the same position). This flaw gave Einstein the insight that something was wrong with
Newton’s gravity law. In spite of the lack of solid experimental results, Einstein was
guided mainly by his intuition about how the laws of physics should look like (so the
fact that Newton’s law of gravity depended on a particular reference frame also played
a role in Einstein’s thoughts about the wrongness of such law).

With those fuzzy ideas, in 1907 Einstein was asked to write a review on his relativity
theory (special at that time). While doing it, he realized that gravity was not included in
the theory, since it only considered inertial frames, i.e. frames that are free of forces.

Thinking about how to include gravitational force in the relativity theory, while he
worked at the patent office in Berna, he was struck by a happy idea, which he would
later think of asthe luckiest though of my life: while falling freely, a person can not feel
his/her own weight.

In other words, a constant gravitational field can be mimicked by an accelerating
system. This is theequivalence principle, equivalence which arises because gravitational
mass, the one that exerts gravitational attraction, is the same as inertial mass, the one
that opposes resistence or inertia to be moved. This is one ofthe basic ideas of general
relativity.

Basic ideas of general relativity.

The equivalence between inertial and gravitational mass was already noticed by
Galileo (1600): all objects fall with the same acceleration, no matter how much mass
each have. A stone and a feather left falling down from the same height, will both get
to the floor at the same time (neglecting air resistance). This is so because gravitational
force is proportional to mass; this does not happen with other forces like, for instance,
electrical force.

Many experiments have been done to test this equivalence, beginning with Eötvös in
the nineteenth century, till now. The precision reached so far is of about ten digits or
more. The hint that this idea gave to Einstein was that the description of gravitational
force can be done in a way different than that of Newton’s. Instead of vectors, one
can equivalently describe the trajectories of bodies (particles) under the influence the
gravity. The presence of massive bodies change trajectories: just think of how Earth
attracts bodies, making they fall directed to its center. The paths that particles follow
are, in general, curved. These curves are determined by the bodies that produce the
gravitational field. Moreover, if spacetime is curved, evenlight trajectories should be
bend. In this approach, general relativity is a field theory described through geometry,
instead of forces. Those paths or trajectories are not straight in general, therefore,
geometry, particularly the study of curves in space was required. Later on this idea was
called by Wheeler (1960) as geometrodynamics. So, we say thatgeneral relativity is a
field theory, where the field is geometry and, as opposed to theNewtonian conception,
there is no action at distance.



However, in our neighbourhood we do not notice any curved trajectory. Locally our
space seems to be flat like a sheet of paper on a table. Thus, spacetime should locally be
the one of special relativity, namely Minkowski spacetime,or Euclidean space at each
point and its neighbourhood. Then at each point we should be able to find an inertial
reference frame. Moreover, any gravity theory should be consistent with the fact that if
Newtonian gravity is so succesful, that is because it is strikingly precise within certain
limits (with a broad range of applicability), therefore, the new gravity theory, whichever
it be, must be Newton’s gravity at certain limit.

Surfaces and curved spaces

Let us think about the curvature of spacetime. In 1854, Bernhard Riemann suggested
that the differential geometry of our four-dimensional spaces should be determined by
external forces. Riemann, Levi-Civita, Gauss and other mathematicians had already
studied curved surfaces. Therefore, in order to formulate the general relativity theory,
Einstein had to learn what now we call Riemannian geometry.

Although we are familiar with curved surfaces, we cannot visualize curvature in three
or more dimensions, since we cannot immerse our three-dimensional space in a four-
dimensional one and see it “from the outside”.

As opposed to a plane space where points can be labelled by Cartesian coordinates,
and the axes are perpendicular to each other in each point, inRiemannian or curved
spaces, the axes are, in general, not perpendicular to each other. Let us consider, for
instance, the distance on a sphere of radiusa, where(x,y,z) are Cartesian coordinates in
space,

x = asinθ cosφ , y = asinθ sinφ , z= acosθ

ds2 = dx2 +dy2 +dz2 = a2dθ 2 +a2sin2θdφ2,

>From this we see that, in a Riemannian metric,ds2 is a quadratic form.
Besides curved spaces, we need a temporal coordinate. This leads us to a generaliza-

tion to non positive-definite metrics, i.e., spaces where the distance between two points is
not necessarily positive. The most known example of this kind of spaces is Minkowski
space:ds2 = −c2dt2 + dx2 + dy2 + dz2. This is an euclidean space with an additional
temporal coordinate, and we say that thesignatureof this space is(−+++). Signature
is invariant with respect to real coordinate transformations.

Some gravitational effects

In which precise manner does gravity curve spacetime?
I hope that, by now, you are already convinced that time is relative, that it is not

the same to every observer, but rather it depends on his/her movement. Well, time is
also affected by gravity: Two observers staying in a building of twenty floors, one at



the basement and the other on the last floor, will not measure the same time intervals.
In fact, an astonishing result has recently been settled: last winter, a difference between
measurements on different heights has been established, with as little difference between
heights as 22.6 meters. The difference in frequencies (liketic tacs of a clock) was
4.92×10−15. This result is of great importance in the search for a theoryof quantum
gravity and could have also practical implications, such asimproving the accuracy of
global positioning systems. A clock near a massive object runs slower than a clock
situated far from the massive source. At the Sun’s surface a clock works slower (one
part in a million) than a clock far away. A clock on the surfaceof a neutron star works
70% slower than another clock situated far from the star.

The shift on wavelenghts of light is another effect producedby a massive source:
Light wavelenght is shifted towards red (large wavelenghts) when coming from a grav-
itational field. The mechanical analogue of this effect is when throwing up a stone, it
losses kinetic energy while going up, against gravitational field; so the light, traveling
away from a gravitational field, losses energy, this loss resulting in the red-shifting of
wavelenght (recall thatνλ = c).

These effects are derived from Einstein’s equations, the field equations that determine
in which precise way matter affects the geometry of spacetime.

Einstein’s equations

The basic idea of Einstein’s theory of gravity is the geometrization of gravitational
force: all properties and influence of the gravitational field, are manifested through the
curvature of spacetime. Gravity and curvature should be incorporated into mathematical
equations with the following requirements:

(i) The equations should be formulated in tensorial languaje, in order to embody the
fact that nature is independent of the reference frame.

(ii) Should be partial differential equations of at most second order in the functions to
be determined; in this case to determine the metricgi j because

(iii) in the weak field limit, the equations should reduce to Newtonian gravity, i.e. a
Poisson equation for the gravitational potentialφ with the mass densityρ as source.

∇2φ = 4πGρ
(iv) The source of gravitational field, the so-calledenergy-momentum tensorshould

be the analogue to mass density.
(v) Flat spacetime should correspond to the absence of matter (ρ = 0).
Such equations were sought by Einstein for years, like eightyears or so. Assisted by

his good friend from academic years, Marcel Grossman, he hadto learn to use new math-
ematical tools like Riemannian geometry and differential geometry. In November 1915,
at the Prusian Academy of Sciences, Einstein introduced hisnew theory of gravitation,
comprised in the tensorial equation,

Gµν = Rµν −
1
2

gµνR= κTµν . (2)

To substitute the only Newtonian equation
FG = GMm

r2 .



Tecnically, general relativity is a field theory with a tensorial potential, while Newto-
nian gravity theory or Maxwell electromagnetic theory have, respectively, a scalar and
vectorial potential, whose derivatives are related to the field itself. Eq. (2) are actually
ten equations; corresponding to ten metric components to bedetermined,gµν , sinceµ
andν can take four values each (4×4) and considering thatgµν = gνµ .

The left-hand side of (2) is related to the geometry of spacetime: Rµν measures the
geodesic deviation, whilegµν tells us how to measure distances and time.Rmeasures the
spacetime curvature, is analogous to Gaussian curvatureκ for surfaces. The right hand
side of the equation is the matter content of spacetime, other than gravitational mass;
in here you can put electromagnetic fields, fluids, scalar fields (like axions, dilatons,
spinorial fields, etc.). Therefore, Einstein’s equations express the compromise between
spacetime geometry and the existing matter, in such a way that each one influences the
other, being the curvature the manifestation of the massivecontent of that spacetime. The
main difference with respect to the old approach is that matter evolves no longer through
a static spatial scenario, where all clocks in universe agree in their time measurements,
but rather now spacetime is an active actor that affects matter dynamics; and in turn
the matter content, through the energy-momentum tensorTµν , determines how the
geometry is. Moreover, Einstein’s equations are not linear, where by linear effects we
understand those that are proportional to the causes, thosewhere small variations in
initial conditions lead to small changes in the response, not much different than the
former. In nonlinear processes this is not the case.

Sometimes we use the approximation in which some weak fields or particles do not
affect the geometry; the structure of space is completely determined byTµν , assuming
that the latter in turn does not affect curvature. In this case, the particles or fields are
called test particles or test fields, i.e., fields that do not produce in turn new gravitational
fields, but rather are only affected by the already existing gravitational field.

Freedom in choosing any reference frame should be preserved, i.e. any coordinate
system should be able to be used to describe physics (of course some coordinates are
more apropriate to some problems, depending on the geometryof the analized system);
therefore we need four degrees of freedom, one for each coordinate. In other words, the
physics derived from the metric tensor (Einstein’s equations) should not depend on the
special coordinate system chosen. Keeping these four degrees of freedom, it turns out
that only six of the equations are needed to determine the metric tensor,gµν . Once the
metric tensor is known, we then know how to measure distancesin that spacetime, and
hence we can determine also particle trajectories, etc., through the line element,

ds2 = gµνdxµdxν . (3)

Testing the new gravitational theory

Why would one want to use Einstein’s equations to describe gravity, if they are way
more complicated than the unique Newton’s equation,F = GM1M2/r2 ?

We have commented above about light discrepancies observedin Mercury’s orbit: its
orbit does not close, after one revolution around the Sun Mercury does not get back to



the same place. Therefore we would expect the new theory to predict correctly the orbit
and this is in fact one of the achievements of Einstein’s theory.

There are also other predictions that were confirmed by observations, namely,
1. The precession of the perihelium of the orbits in binary systems, i.e. two compact

objects rotating around each other. In our solar system, theeffect is noticeable only in
Mercury’s orbit. Nowadays it is observed in several binary systems.

2. Light rays are bended when passing near a massive object. This effect was con-
firmed during a solar eclipse, as early as in 1919, by Sir Arthur Eddington.

3. Doppler gravitational effect, consisting in the delay inclocks, or the shift to red of
light waves. The effect has been observed in light coming from stars; in fact this is a
manner to measure mass stars, observing how much light is redded.

4. In binary systems, it is possible to observe how the systemloses kinematical energy,
through decreasing its period; in other words, the two rotating objects are getting closer,
until eventually they will collide with each other. This effect has been observed since
the 70’s in the pulsar binary PRS 1913, explaining it as the releasing of gravitational
radiation is the accomplishment that deserved the Nobel prize to Russel and Hulse in
1993.

How are these effects predicted by Einstein’s equations?
Equations (2) are solved assuming the simplest geometry: spherical symmetry, i.e we

suppose that the metric tensor depends only in one radial coordinater, which measures
the distance to a center. To generate this geometry, a massive body should stay at that
center. We also assume a stationary system, i.e. the metric does not depend on time; a
spacetime with these features has the form,

ds2 = − f (r)dt2 +[ f (r)]−1dr2 + r2(dθ 2 +sin2θdφ2). (4)

where f (r) is determined from Einstein’s equations, which in this casereduce to just
one equation:

d
dr

(r f (r)) = 1, (5)

whose solution isf = 1+C/r, whereC is a constant that can be determined using the
condition that at large distances from the center (r → ∞), the gravitational field is very
weak, tending to vanish. This requirement lead us to determine the constant as the mass
M of a body located at the originr = 0. The line element of this spacetime is,

ds2 = −

(

1−
2M
r

)

dt2 +

(

1−
2M
r

)−1

dr2 + r2(dθ 2 +sin2θdφ2). (6)

This metric is known as Schwarzschild solution and was foundby Karl Schwarzschild
in 1916. In spite of being the simplest possible solution of Einstein’s equations, it has
been of huge usefulness to derive some effects or predictions as well as to lead to the
prediction of the existence of black holes, very compact massive objects.

Assuming that the sun with massM⊙ is located in the center of our reference system,
our solar system, and assuming that planets, having much smaller masses, do not disturb
Sun’s gravity, then the planets move along the minimal curves or geodesics, i.e. the
planetary orbits are the geodesics in the spacetime produced by the mass of the Sun.



Then we can compare the predicted orbits with the real ones. Neglecting the mass of
planets, as gross as it may seem at first sight, is actually a good approximation: just think
that Sun’s mass (1030 kg) is one thousand bigger than Jupiter’s, the most massive planet,
whose mass is of about 1027 kg; therefore the mass ratio isMJup/M⊙ = 10−3 = 0.001,
quite small. By studying the geodesics of the resulting system, one finds the precession
of Mercury’s perihelium. In the next section we will introduce the concept of a black
hole and comment about the observational astrophysical evidence that points to the real
existence of such amazing object.

BLACK HOLE: THE DARK OBJECT

The concept of a black hole (still not so called at the time) was born in 1783 in the
mind of an Englishman, John Michel. He reasoned as follows: Knowing the Newtonian
gravity law, since every planet attracts bodies, then it could happen that a planet exists
with such a great gravitational force, that even light couldnot escape from it. Implicit
is the idea that light is composed by small corpuscles traveling in straight line; such a
model for light was accepted at the time, theNewtonian corpuscular light theory.The
same idea appears in the treatise “Exposition du système du monde” (The System of the
World) of Pierre Simon Laplace in 1793. Later on, the wave theory of light proposed
by Huygens explaining difraction, reflection, and other wavy effects of light, substituted
the newtonian corpuscular theory and the concept of thedark objectwas forgotten.

One century later, the dark objects were brought back to stage. About 1928, in the
astronomy circles, the mistery of a strange kind of stars, called white dwarfs, was
debated. These stars, according to the observations, were incredibly dense. From its
observed luminosity and orbit, the density of one of these stars, Sirius B, turned out to
be about 61000gr/cm3, which is huge compared with the density of the denser materials
known in Earth, for example metals: The density of steel is 7.85gr/cm3, that of lead
is 11.3gr/cm3, and that of platinum is 21.46gr/cm3. The mean density of Earth is
5.5gr/cm3 while that of the Sun is about 1.4gr/cm3. This is why the enormous density
of Sirius B was a complete mistery, no one could imagine what kind of material was it
made of.

Observations of the redshift of light coming from the star confirmed its huge density:
according to einsteinian gravity, light coming from that star should have a redshift thirty
times larger than light coming from the Sun. This was verifiedby W. S. Adams at Mont
Wilson Observatory in Pasadena, Cal.

To solve the mistery it was necessary to incorporate the effects of quantum mechan-
ics, the theory of the microscopic world, a recently born theory (1926). Subrahmanyan
Chandrasekhar, just graduated as a physicist, anxious to contribute to frontier physics,
addressed the problem by studying the way in which equillibrium may arise between
forces in stars; it occurs when two pressures are balanced: the internal pressure provo-
qued by nuclear reactions, pushing outside the star, and thegravitational weight, which
pushes in the opposite direction, to the center of the star.

As far as 1925, the equilibrium of a star was explained by the internal pressure origi-
nated from chemical reactions, producing heat, counteracting against gravity. However,
at temperatures as high as the ones tipical in a star, not onlyfuel is being consumed,



but nuclear reactions take place, transforming elements inheavier ones. Moreover, free
electrons are wandering very fast, at high speeds (relativistic speeds), in a state of matter
calledplasmaor degenerate electrons, where atoms have lost their identities as atoms
of such and such elements. At energies that high, quantum effects display: electrons
acquire wavy features (another character of electrons, itsduality wave-particle). The
consequence of this behavior is that matter can be compressed to densities higher than
the usual ones.

The young Chandrasekhar was updated on the new quantum physics and applied his
recently acquired knowledge to solve the mistery of white dwarfs [4]. Working in the
detailed balance between the opposite forces acting in stars, he realized that in the state
of degenerate electron plasma, the electronic inertia was enhanced as if electrons were
heavier. The resistance of such particles to be compressed is different than it is in normal
conditions. Let us suppose that a star is compressed, by effect of gravity, augmenting in
1 % its density. How much does the resistance to be compressedchange? The answer
at that time was that it should increase on 5/3 (166.67%). However, Chandrasekhar,
applying his quantum knowledge, ascertained that the wavy nature of electrons drops
that resistance to 4/3, thus explaining why the observed stars are so dense. Mistery
solved, objects so dense as Sirius B are produced by nature. Nowadays, the measured
actual density of Sirius B is 4×106gr/cm3.

Even more, if the star is massive enough, then the pressure outwards can not compen-
sate the gravitational pressure inwards, thus making the external mass layers collapse
inwards, forming a denser object. The critical mass for thisto occur is the so called
Chandrasekhar limit equal to 1.4M⊙. Collapse is followed by an explosion that ejects
much of the material of the star (a supernova explosion), andafter that the remaining
core can be a white dwarf, a neutron star or a black hole, depending on the remnant
mass.

Therefore, theoretically, the existence of objects so dense that even light is trapped
inside them is not forbidden; so they are black undetectableobjects. But if we can not
see them, if even light cannot escape from them, how can we be sure of their existence?
The answer is that matter surrounding these objects is pulled into them. When a black
hole is close to a regular bright star, the external layers ofthe latter are pulled towards the
former and fall into it. This matter, mostly gaseous matter,as falling to the black hole,
is heated up and starts emitting light in a wide spectrum of energies, particularly high
energy beams or X-rays. This radiation could be detected when satellites were launch
(1971) with Geiger counters inside; then several X-ray souces were detected, and it
was suspected that the emitter object was close to a compact object (neutron star, black
hole). The described mechanism to detect black holes was suggested in the mid sixties
by Zeld́ovich and Novikov, two Russian physicists.

All sized black holes

About 1974, a particular X-ray source was detected, and whenlooking for its invisible
companion, a pulsar was detected by its radio waves. The two objects forming a binary
system (star-black hole, star-pulsar, etc.) cannot be detected by the same apparatus, since



they release radiation in different frequencies. That radiaton may be X-rays (gases falling
into a compact object), radio waves (pulsar, neutron stars)or visible light (white dwarf);
and to detect each type of radiation requires a different apparatus.

Nowadays many of these objects have been observed, and thereare many candidates
to black holes; so that we firmly believe now that they can exist in nature [5]. Moreover
they are present in various sizes: small black holes with masses from 1.4-20M⊙ ; giant
black holes living in the centers of galaxies, with masses ofbillions M⊙ ; and medium
size black holes with masses of about 5000M⊙, that have been observed in globular
clusters.

Small black holes are probably located in binary systems, i.e. with another compact
object as companion. Several aspirants are observed in thiscategory. This objects are
looked for once a X-ray source has been detected, X-ray radiation emitted by the
gases of the external layers of companion while falling intothe hole. X-ray radiation
is detected by satellites outside the Earth atmosphere, which (fortunately!) protects us
from receiving that harmful radiation.

At the far end of the electromagnetic spectrum, the very low energetic waves are radio
waves, whose wavelenghts can be of meters. They can be observed on Earth with the aid
of huge parabolic antennas. Penzias and Wilson in 1965 detected this kind of radiation
coming from outside the Earth. Later on it was akcnowledged that this radiation is like a
thermal bath surrounding the whole universe with an almost uniform temperature of 2.7
◦K, which is called thecosmic microwave background, that is thought to be the remnant
of the Big Bang.

This kind of radiation was observed by Karl Jansky, since 1939, coming from the
cosmos, more precisely, from the center of our galaxy. Nobody paid attention to this
discovery, but few years later more observations of this kind appeared. This radiation
comes from giant black holes situated in the center of almostall galaxies. It is thought
that these are black holes billions of times more massive than stellar black holes. In
this respect the discovery of giant black holes was unexpected. After the World War
II, new tecnology developed during the war (radars to detectthe enemy) began to be
applied to observations in the cosmos. Radars are emisors of waves that are reflected
in some object; the reflected waves allow to determine the location of the reflector.
Scientists in England and Australia started to be interested in that kind of observations, to
detect radiowaves coming from outer space. To determine thelocation of the radiowave
sources is hard, because large plate antenas are needed, dueto the large wavelenght.
Alternatively, several antennas can be arranged to cover big areas of several square
kilometers, and by trianguling signals in this way, it is possible to determine the location
of the source. Signals come from far away galaxies. Some of these sources also emit
visible light that make scientists think that they are starsor quasi-stars, quasars.

Up to recently, black holes were supposed to come only in the two sizes that we just
mentioned. However, there is something intermediate, somekind of medium-sized black
hole. About 2002 two objects, that look just as black holes should look, were detected.
The first of them is in clusters M15, with 4,000M⊙; the other one in G1 with 20,000
M⊙. They are not alone, nor are they in the interior of galaxies,but in globular clusters,
which are assembles of many stars.

Stars join in distict types of conglomerates. Globular clusters consist of the oldest
stars. According to the Space Telescope Spatial Hubble team, if these clusters have black



holes, they are probably there from the very beginning of theformation of stars in the
universe. On the other hand, globular clusters are quiet places, nothing to do with the
violent centers of galaxies with those giant black holes in there. Medium-sized black
holes, such as those just found by Hubble, could be the seeds of future supermassive
black holes, as time goes by. The measurements of masses by Hubble are based on the
velocity the stars rotate with, around the dense centers of globular clusters. This method
yields direct measurements of the masses of black holes.

Black holes: the theory

The old concept of a black hole emerged again in the context ofgeneral relativity, as
one of the solutions of Einstein’s equations. Recall Schwarzschild solution,

ds2 = −

(

1−
2M
r

)

dt2 +

(

1−
2M
r

)−1

dr2 + r2(dθ 2 +sin2θdφ2). (7)

Notice that ifr = 2M, then(1− 2M
r ) = 1−1 = 0, this means that one direction, the

t direction vanishes, while ther-direction becomes infinite, since 1/0 → ∞. In other
words, there is some trouble on the locus of the sphere of radius r = 2M. Nevertheless,
for the celestial objects known so far, one never reaches such a distance (which is called
the Schwarschild radius), since it is really small. In the geometrized unit system, where
the gravitational constantG = 1 and the speed of light isc = 1, measuring the mass
in lenght units, the Schwarzschild radius of the Sun isr = 2M⊙ = 2.94km, while that
of Earth isr = 2MT = 0.88 cm, so for astronomical objects of regular density, their
Schwarzschild radius lies inside the object and there is no way any observer can reach
it.

The horizon

The existence of the locusrG = 2M, called the horizon, sets out several interesting
conceptual questions. Let us consider an object so hugely dense and so small that
its Schwarzschild radius is located outside it; and let us suppose that we can reach
the place wherer = 2M. What happens when we pass through that place? Notice in
the line element from Eq. (7) that when we crossr = 2M, passing fromr > 2M to
r < 2M the factor(1− 2M

r ) changes its sign from positive to negative. This is, the
line element will change its signature from(−+ ++) to (+−++). But we were
measuring time with the negative coordinate (−dt2), while the distance to the center
wasr; the change in sign means that time coordinate now isr, while t is now a spacelike
coordinate inside the sphere of radiusr = 2M. Then inside the horizon, the meaning
of our spacetime coordinates has changed, nowr measures time andt measures the
distance, and spacetime is not static anymore. However, an observer traveling towards
the black hole would traverse the horizon without feeling nothing strange. Except that
he/she would not be able to go back past the horizon again, andwill advance until he/she
crashes withr = 0, the singularity, a place where gravitational forces are so enormous



that will destroy any object. Meanwhile, people observing from outside of the horizon
will see that periodic signals (if the traveler is sending them) coming from the black hole
will diminish their periodicity until they die out.

The singularity

For many years it was thought that atrG = 2M there existed a singularity, this meaning
a point in spacetime where and when curvature is infinite, ourequations lose their
validity and we do not really know what happens there. This opinion held until 1933,
when Lemaitre found that the so-calledSchwarzschild singularityis not really a physical
singularity, but only a bad choice of coordinates, and a better choice shows that nothing
strange happens there.

To illustrate it, we will create a coordinate singularity: Let us consider the two-
dimensional line elementdσ2 = dx2 +dy2. By means of the coordinate transformation
given byξ 7→ x3

3 , the previous line element becomesdσ2 = (3ξ )−4/3dξ 2 +dy2; which
diverges atξ = 0, thus giving us a singularity which is due to the choice of coordinates
only.

It often happens that the bad choice is not as obvious as in theprevious example.
Therefore to discover if the divergence of the line element or singularity really exists
or it is just a consequence of the choice of coordinates, we should calculate quantities
that do not depend on the coordinate system. These quantities are theinvariants(with
respect to changes of coordinates). This curvature invariants are scalar quantities that we
can calculate from the curvature tensors by contracting their indexes. If the invariants at
some points become infinite, then the singularity is real, since those curvature invariants
will diverge in any coordinate system. On the contrary, if invariants are finite all over
the coordinate range, then infinities in the metric components gi j are an effect of the
coordinates, and there does not really exist any singularity. For instance in Schwarzschild
solution, the invariant

Rµναβ Rµναβ =
48M2

r6 , (8)

is finite for any value ofr, and in particular there is no problem atr = 2M (we get a
(finite) value of 3/4M4); however atr = 0, we actually get infinity, regardless of the
choice of coordinates: this singularity is real and will be noticed by any observer. This
quantity is invariant because all of the tensor indices appear contracted, thus no change
of coordinates will change the value of that expression.

In 1960, M. D. Kruskal found a coordinate system such that theline element is finite
even atr = 2M, thus showing the good behaviour of spacetime at that point.

Quantum Mechanics and black holes

So, a black hole is an object that do not allow light to escape.We will never be able to
seeit directly but only indirectly, through the radiating matter that falls into it. Such is



the prediction of general relativity: when a star collapsesforming a black hole, the final
object can be completely described by two numbers: its mass and its angular momentum
(how fast it rotates); this claim is known as theno hair theorem(although, as K. S.
Thorne points out, it should really be known as thetwo hair theorem).

In 1963, the Australian R.P. Kerr derived a solution of Einstein’s equations that de-
scribes the spacetime created by a rotating body with massM and angular momentum
per mass unita; the corresponding line element, now known as Kerr metric, in coordi-
nates(r,θ ,φ , t), is given by

ds2 = ρ2(
dr2

∆
+dθ 2)+(r2 +a2)sin2θdφ2−dt2 (9)

+
2Mr
ρ2 (asin2θdφ −dt)2,

whereρ2(r,θ) = r2 +a2cos2θ , ∆(r) = r2−2Mr +a2. This spacetime has been very
useful in determining many properties of black holes that rotate, as most of them should,
since they are born from rotating stars. When this solution isperturbed (this meaning
that one considers its metric components to begi j = 1+ εhi j , whereε is very small),
physically it represents the fact that the hole interacts with tiny waves or some other
tiny distortions, but only tiny things, and we determine what happens. These probes
or perturbationsget dispersed leaving the hole as it was at the beginning. Therefore,
we can interpret that black holes do not care about small changes in their immediate
neighbourhood (a black hole is astable solution); moreover they do not depend on the
kind of material they originally came to be from. All the finalblack hole inherits is the
total massM and total angular momentuma. This is, as we said, theno hair theorem.

Therefore black holes are affected by gravitational forcesonly, but the main domain
in which gravitational forces make feel their influence is the domain of the macroscopic.
In the microscopic world gravity is negligible, since microscopic masses are tiny. In the
microscopic domain, other forces are the dominant ones: electromagnetic and strong
nuclear force. This is the quantum world. Only in very particular scenarios, will gravity
be as important as any other of these forces. For instance in the neighborhood of a black
hole, where the gravitational field is huge. In this sense we can think of Einstein’s theory
as a field approximation that does not describe all aspects ofnature (for example, its
quantum aspects). A complete description of nature would then be given by a theory
that accounts for both gravitational and quantum forces, i.e. aquantum gravity.

Currently, there are several proposals for quantum gravity theory, but they still do not
predict observations that can be tested. What has been done a lot and with a pretty rea-
sonable success, is to take a part of gravity and a part of quantum theory, in what is called
a semiclassic or semiquantum approach; assuming a curved and fixed scenario, where
there exist quantum fields that do not affect the curvature ofspacetime. For instance,
the neighbouring spacetime of a black hole (Schwarzschild solution) interacting with
photons or scalar particles that obey quantum equations. Inthis approach, geometry in
the left hand side of Einstein’s equations (2) is curved but fixed, while in the right hand
side, matter (or the energy-momentum tensor) is the expected value of a quantum field,
this is,



Gµν = Rµν −
1
2

gµνR= 〈Tµν〉. (10)

>From this scheme, we can get amazing and unexpected facts: black holes evaporate!

Black holes evaporate!

For us, vacuum is related to the absence of matter. However, according to quantum
mechanics, vacuum is not empty space. Even when there is no matter, vacuum may
fluctuate: even when the total energy is zero in the mean, it may happen that small
regions with positive energy are compensated by other smallregions with negative
energy; these arevacuum fluctuations. We do not know if this is really the way nature
is, but it is a model we have. Since the model works, i.e. it predicts observable effects,
then the model is good. One of the predictions is that vacuum fluctuations cause that
some atoms emit radiation spontaneously. Another predicted and observed effect is the
Casimir effect, which consists in two paralell metal plates,in a vacuum enviroment,
which attract each other without any apparent cause (i.e. inabsence of any external
force). One of the first good predictions of this vacuum fluctuations model was related
to the hydrogen spectrum or energy levels, in some fine lines called hyperfine structure.
Therefore, vacuum (according to quantum mechanics) is not abored empty state, but an
interesting and dynamical one that awakes when interactingwith electric or magnetic
fields, creating and destroying elementary particles all the time.

Now let us go back to the gravitational fields, modelled as curvature or wrinkles in
spacetime. May they present similar effects? How is vacuum for gravitational field? The
logic implication is that when vacuous spacetime interactswith other fields, a very sim-
ilar creation and destruction of elementary particles takes place, in a way analogous to
that of electromagnetic vacuum in which electrons and positrons are created and de-
stroyed. If gravitational energy fluctuations do exist, spacetime suffers very tiny fluctu-
ations in curvature, so that there is no net creation of particles and energy remains the
same.

By the year 1974, Steven Hawking found that near the horizon ofa black hole,
particles can be created if an external field is turned on. In astate of (initially) zero
energy of the probing field, a pair of particles, one with positive and the other with
negative energy, might be created. It may happen that the particle with negative energy
falls into the black hole, while the one with positive energyescapes, thus really coming
into existence. Now if this happens a lot, it would appear as if the black hole radiates
particles, or some kind of radiation, with an energy associated. We could say then that a
black hole has a temperature! It turns out that this temperature is inversely proportional
to the mass of the black hole. For a black hole of one solar mass, this temperature is
too small to be detected. The tinier the black hole is, the greater its temperature will be.
For instance, a black hole with mass 1018 Kg (mass in the range of that of a mountain)
would have a temperature of 5000◦K, and its aspect would be like that of a white bulb
of one miliwatt.

In radiating, the black hole loses mass becoming smaller andsmaller, and so it in-
creases its temperature and eventually, having loss all itsmass, it will vanish completely;



then we could say (maybe abusing of languaje) that the black hole had evaporated. A
black hole of a few kilograms (something really hard to create) would evaporate in a
milisecond, releasing more energy than an atomic bomb.

This kind of speculations gave rise to questions along the lines of whether there is
something like a thermodynamical entropy associated to these processes?. And, if this is
so, which are the microscopic states responsible for this entropy?, or how can we derive
such a property from a microscopic statistical model?. And also, what happens with all
the information carried by the matter that is swallowed by the black hole?

Black hole entropy

Recall that entropy is a way of measuring the extent to which a system is “disordered”;
to derive entropy from first principles, a microscopic modelshould be assumed. Recall
also that the second law of thermodynamics says that the entropy of a system never
decreases. Well, it turns out that for black holes there is a rule, very analogous to the
entropy law, provided one identifies entropy andhorizon area, the latter being given by
A = 4πr2

h, whererh is the horizon radius.
Hawking and Bekenstein arrived to the conclusion that, when ablack hole swallow

things, its horizon area increases, and there is no process which make this area decrease.
Then horizon area and the entropy are two of a kind. However, if one wants to go
farther, then we should be able to figure out a microscopic model that explains the
black holeentropy. Some calculations give the huge number ofS≈ 1079, which still
can not be explained. This problem, still unsolved, is very complicated and the answer
would have to involve a correct theory that joins gravity andquantum mechanics, and
the formulation of a statistical model in terms of such a theory.

GRAVITATIONAL WAVES

Gravitational waves are another amazing feature that comesout of general relativity;
more than that, gravitational waves have beenindirectly observed. Binary pulsars show
several relativistic effects; observations in their diminishing rotational periods constitute
the most recent confirmation of the existence of gravitational radiation.

In 1974, a pulsating source was discovered: it was the PSR 1913+16 pulsar. Shortly
afterward, this pulsar was found out to be actually two compact bodies in rotation one
around the other. This system has been observed for 37 years and by now all of its
features are well known: the orbits, the frequencies of the pulses; the masses of the two
bodies (which are 1.4411 M⊙ and 1.3873 M⊙); and the duration of the orbital period: 7
hours and 45 minutes. We know that one of the objects is a pulsar, since we get periodic
signals (radiowaves) from it; while the other must be a neutron star since it doesn’t
eclipse the pulses. The orbit of the system has a size of aboutthe solar radius, 695 000
km.

Two objects rotating around each other will generate gravitational waves. The two
objects feel mutual attraction and keep getting closer and closer (in astronomical times)
until they eventually collide. During all the process, gravitational waves are released, and



therefore the system keeps losing kinetic energy. Since theobjects are getting closer, the
orbit gets smaller and consequently, their period of revolution becomes shorter as time
elapses.

The aforementioned binary pulsar is some 16 thousand light years from us. Altough
the signals are weak, after four years of observations the diminishment of the period
was noticed: the orbit was shrinking. This means that the system is losing energy and
the two stars are falling toward each other. If it is assumed that the released energy is
gravitational radiation, and the theoretical calculationof the reduction of the period is
plotted jointly with the observed data, the concordance between both is astonishing [6].

Every year the orbital period decreases by 75×10−6 of a second. With each revolution
of one star around the other, they get closer by one milimeter. So they will collide in 240
million years from now. Other relativistic effects are alsodetected in this binary system:
the precession of the orbit is vigorous, as big as 4.2 degreesper year, 35 thousand times
greater than that of Mercury’s orbit.

Nowadays, about 50 of those systems are being observed, and some of them remark-
ably exhibit several relativistic effects. For instance, the two pulsars binary system PSR
JO737-3039 A/B, whose orbit shrinks (even faster than PSR 1913+16) 7 milimeters
every day, so that the two pulsars will collide in 85 million years. Moreover, since both
bodies are pulsars, they emit radio pulses with a measurablefrequency, and it is observed
how one signal eclipses the other periodically.

These observations are an indirect proof of the existence ofgravitational waves pre-
dicted by general relativity. In 1993 Rusell Hulse and JosephTaylor were awarded the
Nobel Prize in Physics by their discovery of the PRS 1913+16 pulsar, as an acknowl-
edgement from the scientific community to the reality of gravitational radiation. As a
sequel, several groups all around the world began to think how to detectdirectly the
gravitational waves.

Some theory on gravitational waves

As was mentioned, gravitational waves are distortions of the spacetime curvature;
perturbations that transport energy. Theoretically, the existence of gravitational waves
was found not long time after the introduction of general relativity. Let us consider the
spacetime, characterized by the metric tensor, plus a smalltiny perturbation,

gµν = ηµν + εhµν , (11)

whereηµν is the Minkowski metric tensor,ε ≪ 1 is a dimensionless small parameter
andhµν is the gravitational perturbation. Once we know the metric tensor the curvature
quantities can be calculated: the Christoffel symbolsΓγ

µν , the Ricci tensorRµν , the
curvature scalarR. All these quantities are then plugged into Einstein’s equations, and,
throwing out all terms of order greater than one inε, we get the linearized Einstein’s
equations,

(

∇2−
1
c2

∂ 2

∂ t2

)

hµν = 0, (12)



which is the wave equation, with velocity of propagationc! This tells us that gravity
may have a wavy existence, at least theoretically; and moreover, this waves travel with
the velocity of light. Einstein himself found this result by1916, the year after the
publication of the general relativity theory. He was skeptical about the real existence
of the gravitational field in a wavy form; he thought it was a result of the linearization
process. Other physicists had doubts about gravitational waves as well. In the fifties
there was still a debate on whether waves that appear in a particular reference frame,
may disappear in another. Theoretically, it was found that this kind of waves would carry
energy, but energy turns out not to be a well established concept in general relativity.

However, after 1993, the idea of the real existence of gravitational waves began to
permeate among the scientific community. How can we know thata gravitational wave
is passing through?. If test particles are arranged forminga ring, located transversal to
the wave, the ring will stretch and shrinks successively so that it takes the form of an
ellipse, then a circle, then again an ellipse, etc; and the same but with the ellipse rotated
by an angle ofπ/4 if the wave carries another polarization. The spacetime stretches and
shrinks transversally to the direction of propagation of the wave.

The theoretical approach, starting from the linearized gravity, is very similar to the
study of the electromagnetic field, and there are in fact manycommon features: both
waves are transversal to the propagation direction; and thewave equation for gravity,
when in a special reference frame (tt-gauge), has only two degrees of freedom or
polarizations: “+" and “×", just like electromagnetic waves.

However, there are important differences between electromagnetic and gravitational
waves, mainly in the way they are generated and how they interact with the medium
they traverse: electromagnetic radiation can be generatedby a time varying electric
dipole. In contrast, a pulsating spherical body won’t generate gravitational radiation:
the gravitational dipole does not exist, because the gravitational mass (which in this
context works as the “gravitational charge”) and the inertial mass are equal, and so the
conservation of momentum would forbid dipolar gravitational radiation. Thus, the first
radiative term in a multipole expansion of gravitational radiation is the quadrupolar one.
Calculating the radiated power by a binary system with massesm1 andm2, rotating in
an elliptic orbit of excentricityε and larger semiaxisa we obtain [7]

P = −
dE
dt

= −
8
15

G4

a5c5m2
1m2

2(m1 +m2)F(ε), (13)

whereF(ε) is a function depending on the excentricity,G = 6.67× 10−11m3/kg s2

is the gravitational constant of Newton, andc = 3× 108m/s. Notice that the factor
G4/c5 ∼ 10−52J/s is very small, so that in order to generate a measurable gravitational
radiation, huge masses are needed, preferably close to eachother, rotating at large
angular velocities. Let us consider for instance the systemEarth-Sun, with masses
mEarth = 2× 1024kg andm⊙ = 2× 1030kg, separated byd = 1.5× 1011m; then the
radiated power isP = 22 Watts. i.e. the released gravitational radiation is 22 Joules
per second. As a consequence, the orbit Earth-Sun is shrinking at a rate of 10−16m per
day. Hilariously slow! But consider now a binary pulsar, withmasses of about one solar
mass each, separated by a distanced = 189× 106m, then the radiated power is about
P = 4.32×1026 Watts, which is quite huge.



Direct detection of gravitational waves

Back in history, the first attempts to directly detect gravitational waves took place in
the decade of 1960, by Joseph Weber in Maryland. Weber figuredout how to detect
waves by using the resonance phenomena, which occurs when the frequency of a
wave interacting with a system is the same than the characteristic frequency of the
system. If this happens, the system releases a lot of energy.So Weber designed an
apparatus consisting of a huge aluminium cylinder (3.5 Tons) covered with small pieces
of piezoelectric material; this material emits electric signals when distorted by some
forces, producing an electric current. So, the idea was thatthe gravitational wave,
while passing through the cylinder, and if its frequency wasthe same as the resonant
characteristic frequency of the cylinder (∼ 1000Hz), would generate a resonance which
would in turn distort the cylinder and an electric current would be detected. The tight
range of frequencies in the apparatus was one of the problems; however, Weber reported
two simultaneously observed signals, one in the facility located in Maryland and the
other just a few kilometers away, in Argonne (reported in Physical Review Letters [8]).
But no one could ever detect another signal again, and therefore many people was skeptic
about Weber’s finding and that trend did not prosper ahead.

After the breakthrough of the discovery of the double pulsarPSR 1913+16, and the
subsequent certainty that gravitational radiation was being observed, several groups
around the world, with renewed efforts, began to built facilities aimed to detect directly
gravitational waves.

The way in which people are now trying to detect gravitational waves, is by means of
interferometers. The interferometer is an apparatus that measures the distance traveled
by light in two perpendicular directions. A ray of light is separated into two rays and
using a mirror, one half is sent in one direction and the otherhalf in the perpendicular
direction; at a certain distance, mirrors reflect each ray, so they go back to the initial
point. In this way, if space stretches or shrinks in some direction, each half ray will
traverse different distances and we will know it by observing the difference in the phases
of both rays.

This kind of apparatus was used at the end of the nineteenth century to prove the
nonexistence of aether. The same idea is now reloaded to detect gravitational waves,
but now the mirrors are placed in a massive body. The gravitational wave in passing will
stretch and shrink spacetime, and the perpendicular paths will change their lenght. If this
happens, the traversing rays of light will return to the initial point in a different phase
(the wavefronts would not be in sincrony as when the ray left the source). Roughly
speaking this is the idea to design gravitational wave detectors. Of course, there are
many technical issues to solve. One of them is noise: the expected signal is so tiny that
the seismic movements of Earth, or ocean tides caused by the gravitational force of the
Moon, can mask or hide it. There are also external magnetic fields and cosmic rays.
In order to address this difficulty, the arms of the interferometer are kept in vacuum.
Another one is size: an interferometer trying to detect gravitational waves should be
really big, since the expected frequencies are very tiny. So, the mirrors are placed in
such a way that the rays of light go back to the initial point after being reflected about
100 times.

A theoretical problem is to determine the expected range of frequencies to be detected.



And the expected frequency depends on the phenomena that produces the gravitational
waves. The range of frequencies is wide, from 10−15 Hertz from the Big Bang, through
10−14 Hertz coming from supermassive black holes in the center of our galaxy or from
binary systems far away, to 102 Hertz from binary systems not so far from us.

Some facilities are LIGO, VIRGO, AMANDA. LIGO has made runs but no signals
have reached the laboratory; however, the frequency of events that release gravitational
waves is not so high as to be in panic for not detecting signalsyet. In the next two years,
an advanced stage of the facilities will be constructed in order to reach more sensitivity.
This will augment the number of detectable phenomena.

Lastly, I want to comment on a modern branch of research that has turned out to be a
very fruitful one, namelynumerical relativity[9]. It deals with the numerical simulation
of events such as the colision of two black holes, or how do gravitational waves interact
with a black hole horizon. Many solutions of Einstein’s equations are stationary, i.e. they
do not depend on time; therefore, to figure out the evolution of some of them, Einstein’s
Equations are set as numerical equations that are made to evolve, chosing a particular
initial time which is then let to vary and see what happens. There are several issues to
take care of: for one thing, the evolving solutions must at every time be a solution of
Einstein equations; this is not an easy task, but in this way both the collision of black
holes and the gravitational radiation emitted have been tracked, as well as the process
of colapsing of a mass and the subsequent creation of a horizon. Also, the evolution
of some binary systems has been modeled. From these studies,we can determine the
possible frequency ranges in which gravitational waves canbe searched for, among other
interesting results.
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