2. Datos del profesor		
Alejandro Martínez Borquez	alex@fisica.ugto.mx	

3. Objetivo general / Intenciones educativas / Competencias a desarrollar

Esta materia tiene como objetivo la introducción al análisis de circuitos eléctricos tanto en corriente directa como en corriente alterna. La materia se divide en tres partes: el estudio de herramientas, leyes, métodos y teoremas aplicados al análisis de circuitos en corriente directa; el estudio de circuitos diseñados con amplificadores operacionales; y el estudio de herramientas, leyes, métodos y teoremas aplicados al análisis de circuitos en corriente alterna incluyendo análisis de circuitos trifásicos y circuitos magnéticamente acoplados. Esta materia está diseñada para dar las herramientas formales para el análisis de circuitos eléctricos de baja y alta potencia. Proveerá los insumos para poder entender, calcular y diseñar circuitos eléctricos en corriente directa y alterna al que todo ingeniero se enfrenta cotidianamente.

Competencia

- 1. Conocer, comprender y manipular las herramientas matemáticas utilizadas en el análisis de circuitos como son:matrices, números complejos y solución de ecuaciones diferenciales de primer y segundo orden siendo una manipulación estrictamente operativa de las mismas.
- 2. Conocer las herramientas básicas computacionales aplicadas al análisis de circuitos como lo es Matlab u otras herramientas de simulación aplicables.
- 3. Conocer, comprender y aplicar las leyes básicas que gobiernan a los circuitos eléctricos.
- 4. Conocer, comprender y aplicar los métodos de análisis de circuitos.
- 5. Integrar el conocimiento del análisis de circuitos en los teoremas fundamentales de circuitos.
- 6. Conocer, comprender y manipular a los amplificadores operacionales así como identificar los principales circuitos realizados con estos dispositivos.
- 7. Conocer, comprender y modelar circuitos eléctricos elementales y de segundo orden formados por capacitores, bobinas y resistencias, en un enfoque estrictamente operativo de los mismos, dejando la explicación de los fenómenos electromagnéticos que suceden dentro de los mismos para la materia de electricidad y magnetismo.
- 8. Conocer, comprender y manipular las herramientas matemáticas utilizadas en el análisis de circuitos de corriente alterna.
- 9. Generalizar las leyes de circuitos eléctricos para sistemas de corriente alterna.
- 10. Conocer, comprender y aplicar los métodos de análisis de circuitos para corriente alterna (análisis sinusoidal en estado estable).
- 11. Conocer y aplicar conceptos de análisis en potencia de circuitos de corriente alterna.

4. Plataforma a utilizar	5. Técnica didáctica
fisica.ugto.mx/~alex/Circuito	
https://www.dropbox.com/sh/8mcmcde849zggm6/ AABdS0gAvAucbOTTc7kxg_c3a?dl=0	Project Oriented Learning

Fecha Tema/actividad I. Revisión de herramientas matemáticas y computacionales II. Leyes básicas y conceptos que rigen a los circuitos eléctricos en corriente continua o directa - Conceptos básicos de electricidad, voltaje, corriente, resistencia eléctrica, potencia y energía. - Ley de Ohm - Circuito resistivo y armado de circuitos sencillos en protoboard, aprendiendo a la par manejo de multímetro y fuente de poder. III. Metodología básica para el análisis de nodos y mallas - Análisis de Nodos y Mallas, ecuaciones y leyes de Kirchoff - Equivalentes de Thevenin y Norton. - Armado de circuitos y uso de generador de funciones y osciloscopio.

IV. Teoremas de circuitos que rigen el análisis de circuitos eléctricos

- Teorema de superposición y comporbación de circuitos en equivalencia.

Primer Parcial

V. Estudio y construcción de circuitos electrónicos que contengan amplificadores operacionales

- Fundamentos de Amplificadores operacionales
- Lazo abierto, armado de circuitos y dominio del osciloscopio y generador de funciones.
- Lazo cerrado en retroalimentación negativa, armar configuración como seguidora de voltaje, amplificador inversor y no-inversor, sumador, restador, diferenciador e integrador.

VI Análisis de circuitos que contengan capacitores e inductores y resistencias

- Solución de Ecuaciones Diferenciales por transformada de Laplace
- Análisis de circuitos de primer orden y de orden superior y solución de los mismos de forma teoría y práctica.
- Análisis del efecto de filtro en circuitos RLC, RL, RC y aquellos involucrados con amplificadores operacionales.

VII. Análisis de circuitos en corriente alterna (CA)

- Análisis en el tiempo y con transformada de Laplace, además de fasores.

Segundo Parcial

VIII. Análisis sinusoidal en estado estable

- Fasores, Factor de potencia.

IX. Análisis de potencia en AC

- Circuitos de adelanto y atraso de fase y corrección de factor de potencia, y manejo de armónicos

7. Evaluación Mutuo Acuerdo

Calificación Final

5% Autoevaluación y coevaluación

30% Exámenes parciales (2 parciales)

15% Examen Final (acumulativo)

30% Tareas (Quizz)

10% Proyecto Final (en equipo)

10% Prácticas de Laboratorio

8. Proyecto final

Desarrollo de Caso Práctico cuya descripción se encuentra anexa y en Plataforma.

9. Fechas importantes

Primer Parcial - 23 de Sep Límite para dar de baja materias -Segundo Parcial - 4 de Nov Último día de clases - Viernes 1 de Dic. Exposición Proyeco Final - Viernes 1 de Dic. Examen final - Viernes 8 de Dic.

10.Políticas de clase

- 1. Respeto para con tus compañeros y el profesor.
- 2. Puntual asistencia 12:05 horas. Después de esta hora se permite la entrada con FALTA.
- 3. Las laptops no deberán estar encendidas dentro del horario de clase, a no ser que así lo exprese el profesor.
- 4. Prohibido el uso de celulares y otros equipos electrónicos de uso personal durante la clase

11. Bibliografía Recomendada

Análisis de circuitos en ingeniería. William H. Hayt, Jack E. Kemmerly, Steven M. Durbin. Mc Graw Hill 8th ed, 2012.

12. Herramientas de Software a Utilizar

Excel MAPLE 17 Lenguaje C